www.ietdl.org

Published in IET Software
Received on 26th October 2009
Revised on 2nd March 2011
doi: 10.1049/iet-sen.2009.0083

ISSN 1751-8806

Study on the relevance of the warnings reported
by Java bug-finding tools

J.E.M. Araujo® S. Souza’ M.T. Valente®

TInstitute of Informatics, PUC Minas, Brazil
2Department of Computer Science, UFMG, Brazil
E-mail: mtvalente@gmail.com

Abstract: Several bug-finding tools have been proposed to detect software defects by means of static analysis techniques.
However, there is still no consensus on the effective role that such tools should play in software development. Particularly,
there is still no concluding answer to the following question usually formulated by software developers and software quality
managers: how relevant are the warnings reported by bug finding tools? The authors first report an in-depth study involving
the application of two bug-finding tools (FindBugs and PMD) in five stable versions of the Eclipse platform. Next, in order
to check whether the initial conclusions are supported by other systems, the authors describe an extended case study with 12
systems. In the end, it has been concluded that rates of relevance superior to 50% can be achieved when FindBugs is
configured in a proper way. On the other hand, in the best scenario considered in the research, only 10% of the warnings

reported by PMD have been classified as relevant.

1 Introduction

Recently, several bug-finding tools have been proposed in order
to detect defects in software by means of static analysis
techniques [1—4]. Such tools look for code idioms denoting
inconsistent code or violations in programming practices. By
relying on such idioms (aka bug patterns), the tools can trigger
warnings, for example, due to division by zero, overflow in
arrays, uncaught exceptions, null pointer dereference,
improper use of variables, synchronisation pitfalls, security
vulnerabilities and so on. In summary, bug-finding tools
contribute to extend and improve the warning messages
typically generated by compilers. They can also be used to
enforce coding style guidelines, such as indentation and
naming conventions. Among such tools, we can mention Lint
[5, 6] and PREfix/PREfast [7] (for programs in C/C++),
FindBugs [8] and PMD [9] (for programs in Java) and FxCop
[10] (for programs in C#).

Despite the increasing interest in bug-finding tools — both
academically and by professional software developers — there
is still no consensus on the effective role that such tools
should play in software development [11—14]. Particularly,
there is still no concluding answer to the following question
usually formulated by software developers and software
quality managers: how relevant are the warnings reported by
bug-finding tools?

To contribute to an objective answer to this question, we first
report in this paper an experience involving the application of
two bug-finding tools in different versions of the Eclipse
platform. The following tools have been used: FindBugs [8]
and PMD [9]. These tools are chosen because they are
probably the open-source tools, which are most popular

366
© The Institution of Engineering and Technology 2011

nowadays for static analysing Java systems. In this first
experience, both tools have been retrospectively applied in
order to evaluate the lifetime of the warnings of five versions
of the Eclipse platform. Two lessons have been learned in this
first experience. First, developers should configure FindBugs
to just report warnings from categories that make sense in
their systems (e.g. warnings from the correctness category).
In this way, the number of non-relevant warnings — or false
positives — reported by the tool is reduced by a considerable
amount. In our case study, proceeding in this way we have
achieved relevance rates superior to 50% in some of the
evaluated scenarios. Second, PMD generates too many
warnings to review all of them manually. Moreover, the rate
of relevance is not significant. For example, in the scenarios
considered in our Eclipse case study, at most 10% of the
reported warnings have been classified as relevant.

Next, we have replicated the proposed study to 12 open-
source Java systems. In this extended case study, we have
considered only warnings reported by the FindBugs tool
(since the PMD results in the first case study were not
encouraging). In five systems (Struts, JEdit, Pdfsam, Jython
and Tomcat), we have observed warning lifetimes similar to
the Eclipse case study. On the other hand, in seven systems
we have observed that even the warnings from the
correctness category have not been removed. In this case,
we have contacted the system developers asking them about
the relevance of such warnings. In three systems (JabRef,
Jetty and ArgoUML), the developers have confirmed that
the warnings are relevant, despite they have remained
undetected for almost one year in the code. In such
cases, the developers have arranged to fix the warnings in
the next release of the systems. Finally, in four systems

IET Softw., 2011, Vol. 5, Iss. 4, pp. 366-374
doi: 10.1049/iet-sen.2009.0083

(FreeMind, Jung, JGraph and Xerces), the developers have
classified the warnings as false positives.

The structure of the rest of this paper is as follows. Section 2
provides background and related work information. Section 3
describes the methodology followed in our experiment,
including information about the configuration of the bug-
finding tools and the strategy we have used to calculate the
lifetime of the reported warnings. Sections 4 and 5 present
the Eclipse and the extended case study, respectively.
Section 6 presents the limitations and the threats to the
validity of the presented results and findings. Finally, Section
7 concludes the paper and outlines future research.

2 Background

This section provides an overview of bug-finding tools
(Section 2.1) and describes related work about the empirical
evaluation of such tools (Section 2.2).

2.1 Bug-finding tools

The focus of this paper is on bug-finding tools based on
automated static analysis techniques. In this section, we
present the FindBugs and PMD tools, used in the experience
described in this paper.

FindBugs: FindBugs is an open-source tool that can detect
more than 360 bug patterns by analysing Java bytecode [1, 8].
The detected bug patterns are classified into categories (such
as correctness, performance, malicious code, bad practice
etc.). FindBugs also assigns to each bug pattern a high,
medium or low priority, according to heuristics defined by
each pattern’s implementation. The tool can be extended by
defining new bug detectors, which are written directly in
Java most of the time using the visitor design pattern to
transverse the target program structure. In order to match
bug patterns, detectors can also rely on intraprocedural
control and data flow analysis.

Fig. 1 shows an example of a buggy code detected by
FindBugs in the Eclipse source code (version 3.0). Fig. 2
shows the warning message generated by FindBugs after
analysing this code fragment. Since Java evaluates Boolean
expressions using short-circuit, this warning indicates that
c.isDisposed () (line 131) will only be evaluated when
the first sub-expression evaluates to true, therefore leading
toaNullPointerException. In fact, Eclipse developers
have fixed this bug in a later version by replacing the &&
operator by a || operator.

127: private void setSmartButtonVisible(boolean visible) {

131: if (c == null && c.isDisposed())
132: return;

142: }

Fig. 1 Buggy code detected by FindBugs in the Eclipse plataform
(version 3.0)

www.ietdl.org

PMD: PMD is an open-source tool that supports a rich set
of rules for detecting potential bugs and checking coding style
[9]. For example, PMD supports rules for detecting unused
code, code size related problems (e.g. excessive method
length), questionable manipulation of strings,
questionable manipulation of methods like clone () and
finalize () and so on. There are also rules for dealing
with particular frameworks, such as Java Beans, JSP, JUnit,
Android and so on. Different from FindBugs, PMD requires
the source code of the target program, because constraint
rules are defined over the abstract syntax tree (AST) of such
programs. PMD rule sets can be extended by using either
the visitor pattern or XPath expressions.

For example, suppose the abstract class presented in Fig. 3
(extracted from Eclipse 3.0). For this class, PMD generates
the warning described in Fig. 4, recommending to declare as
abstract the empty method internalDispose. In fact,
developers have turned this method abstract in version 3.4.

2.2 Related work

Ayewah et al. [11] have evaluated the results generated by
FindBugs in three large software projects, including Sun’s
JDK, Sun’s Glassfish J2EE Server and portions of the
Google’s Java code base. For each project, they have
manually classified the medium and high-priority warnings
from the correctness category detected by FindBugs in the
following way: trivial, having some functional impact, and
having substantial functional impact. For example, from the
379 warnings generated when evaluating Sun’s JDK, only 38
warnings have been classified as having substantial functional
impact. However, as acknowledged in the paper, the proposed
categorisation is open to interpretation. Particularly, Sun’s

62: abstract class AbstractInfoView extends ...{

422: protected void internalDispose() {
423: }

496: }

Fig.3 Example of class having a warning generated by PMD
(Eclipse 3.0)

<viclation

beginline="422" endline="423"
begincelumn="19" endcolumn="9"
rule="EmptyMethodInAbstractClassShouldBeAbstract"
ruleset="Design Rules"
package="org.eclipse. jdt.internal.ui.infoviews"
class="AbstractInfoView"
externalInfolrl="http://pmd.sourceforge.net/rules/...."
priority="1">

An empty method in an abstract class should be abstract instead

</violation>

Fig. 4 PMD warning example (for the class showed in Fig. 3)

Null pointer dereference of ¢ in setSmartButtonVisible(boolean)
Dereferenced at JavaStructureDiffViewer.java:[line 131]
In method internal.ui.compare.JavaStructureDiffViewer.setSmartButtonVisible(boolean)

Value loaded from c

Null pointer dereference

A null pointer is dereferenced here. This will lead to a NullPointerException

when the code is executed.

Fig. 2 FindBugs warning example

IET Softw., 2011, Vol. 5, Iss. 4, pp. 366-374
doi: 10.1049/iet-sen.2009.0083

367
© The Institution of Engineering and Technology 2011

www.ietdl.org

JDK project managers could have different opinion about the
proposed classification, based on their experience with
the system, including the importance of existing modules, the
skills of the developers involved in the implementation of
each module and so on.

Zheng et al. [14] have followed the goal question metric
(GQM) paradigm to determine ‘whether automated static
analysis can help an organisation to economically improve
the quality of software products’. To fulfil this goal, they
have evaluated three large-scale C+44 projects from an
industrial partner, Nortel Networks, using three commercial
bug-finding tools: Gimpel’s FlexeLint [http://www.
gimpel.com/html/flex.htm], Reasoning’s Illuma
[http://www.reasoning.com] and Klockwork’s
inForce and GateKeeper [http://www.klockwork.
com]. However, it is not clear whether their results can be
extrapolated to type-safe languages (such as Java).
Furthermore, since their industrial partner relies on an external
prescreening service, their experience has considered only the
true positives that survived this service.

Wagner et al. [15] have applied the same bug detectors
considered in our experience — FindBugs and PMD — in two
industrial case studies. The ultimate goal was to determine
whether these tools are effective to detect field defects, that
is, defects that later would be reported by end-users.
Particularly, they could not find a single warning generated
by FindBugs and PMD that could be related to a field defect.
The reason was that most field defects are due to logical
faults (e.g. calls to wrong application program interface
methods). Despite this fact, we believe it is also important to
evaluate whether the warnings generated by bug-finding
tools denote violations in recommended programming
practices. Such violations could not contribute to incorrect
program behaviour, but can lead for example to code that it
is difficult to understand and evolve.

Kim and Ernst [12] have proposed a prioritisation algorithm
for the warnings issued by bug-finding tools. To motivate their
algorithm, they have evaluated the precision of the warnings
generated by three tools (FindBugs, PMD and JLint
[http://jlint.sourceforge.net]) when applied
to three medium-sized programs. They define precision by
the following ratio: (#warnings on bug-related lines)/
(#warnings issued by the tool). A bug-related line is a line
modified in a bug fix change, that is, a change performed in
the system to fix bugs or other problems reported by end-
users. Therefore similar to the work of Wagner et al. [15],
their definition for precision does not consider warnings
removed by developers in order to improve the internal
quality of the code.

In a previous work, Kim and Ernst have computed the
lifetime of the warnings in two open-source projects
(Columba and jEdit). However, they acknowledge that their
experiment was subject to ambiguities, since they measure
lifetime at the file-level only. More specifically, they
computed lifetime as the period between the first and the
last appearance of a bug category in a given file. Therefore,
when there are multiple warnings of the same category in a
given file, their results do not consider single warning
removals. Moreover, their results could have been
influenced by refactorings such as package splitting or
moving a class/method to another file.

Rutar et al. [16] have compared five Java-based bug-
finding tools: Bandera, ESC, FindBugs, JLint and PMD.
They have discussed the techniques that each of the tools is
based on and finally they have proposed a meta-tool to
combine the results of such bug detectors.

368
© The Institution of Engineering and Technology 2011

Wagner et al. [17] have compared three bug-finding tools
(FindBugs, PMD and QJ Pro) with reviews and tests.
Basically, they have concluded the following: (a) bug-finding
tools detect a subset of the defects detected by reviews
(e.g. only reviews can detect defects such as logical faults or
wrong results from functions); (b) dynamic tests can find
completely different defects than bug-finding tools
(e.g. logical defects that are only visible when executing the
software).

Nagappan and Ball [18] have proposed an empirical
approach for the early prediction of pre-release defect
density based on the warnings generated by static analysis
tools. Using as case study the Windows Server 2003
project, they have concluded that there is a strong positive
correlation between the static analysis defect density and
the pre-release defect density determined by testing.

3 Methodology

In this section, we provide information about the bug-finding
tools evaluated in our experiment (FindBugs and PMD) and
the methodology we have used to compute the lifetime of
the reported warnings.

Bug-finding tools: We have used FindBugs, version 1.3.6.
The tool has been executed in command line mode, with the
—high option enabled. This option defines that only high-
priority warnings should be reported. High-priority warnings
include, for example, bug patterns from the correctness
category (e.g. dereferencing a null reference) but also bugs
classified as malicious code (e.g. writing to a static field in a
non-static method) or bad practice (e.g. overriding the
equals but not the hashCode method).

We have also used PMD, version 4.2.5. PMD has
been configured to just report bugs having the maximal
priority (command line option —minimumpriority = 1).
Furthermore, we have decided to discard warnings from the
following rule sets: BraceRules, Import Statement, Code Size
and Naming Rules. Basically, warnings in such rule sets
represent violations in coding style or naming conventions.
Therefore, owing to the purpose of our study, we have
deliberately classified such warnings as non-relevant.

Calculating warning’s lifetime: To calculate the lifetime of
the warnings issued by both bug-finding tools, we have
implemented a Perl script. This script receives as input the
directories where the target systems have been installed. It
then runs both FindBugs and PMD over such versions. Next,
the output files with the warnings generated by each tool are
processed, in order to generate a new file containing a
signature for each warning. A warning signature is a quadruple
with the following information: an abbreviation for the warning
description and the location of the warning in the source code,
including package, class and method. For example, the
signature for the warning presented in Fig. 1 is the following
quadruple: (NP_ALWAYS_NULL, internal.ui.
compare, JavaStructureDiffViewer, setSmart
ButtonVisible).

Finally, the signature files are processed, in order to calculate
the lifetime of the reported warnings. A warning’s life is
defined by the pair (v,, v,), where v, denotes the version
where the warning has been issued for the first time and v,
denotes the version where the warning has been removed. If
the warning has not been removed until the last version
considered in the experiment, then v, = oo. Therefore,
assuming v, # o0, a warning’s lifetime is defined by date
(vy) — date (v,), where date (v) is the release date of
version v.

IET Softw., 2011, Vol. 5, Iss. 4, pp. 366-374
doi: 10.1049/iet-sen.2009.0083

Evaluated warnings: For a given version, we have only
considered warnings that are located in methods, classes and
packages that have not been renamed in the further versions
considered in the experiment. As mentioned before, a
warning signature contains the name of the method, class and
package where the warning has been detected. In case any of
such elements are renamed, our algorithm for measuring
lifetimes will assume that the warning has been removed and
that a new warning has been inserted in the renamed
element. For example, suppose an experiment including
versions 3.1-3.4 from a given system. Suppose also a
warning located in method m, class ¢, and package p from
version 3.1. In this case, we will only consider this warnings if
the components (m, ¢, p) also exist in versions 3.2, 3.3 and 3.4.

A warning could have been removed due to a major
refactoring in the code of the method where it has been
detected for the first time. For example, suppose the buggy
code from Fig. 1. In this code, we will consider the warning
removed by a change that just replaces the && operator by
the || operator. However, we will also consider the warning
removed by a change that deletes the whole if statement
(line 131). We have considered warning removals due to
general refactorings for two reasons. First, they have no
influence in case we conclude that the warnings are not
relevant (i.e. if all the removals are not enough to denote
relevance, so are just removals due to precise changes).
Second, this approach is commonly adopted in studies that
evaluate bug lifetimes [12, 19].

4 Eclipse case study
4.1 Experiment setup

We have evaluated five Eclipse versions, having number 3.x,
where 0 <x < 4. Table 1 provides detailed information
about the evaluated versions, including their release date
and size in terms of lines of code. The first evaluated
version has been released on June, 2004 and the last
evaluated version has been released on June, 2008. The first
evaluated version has a little more than one million lines of
code (MLOC); the last version has more than 1.7 MLOC.
Table 1 also shows the time required by FindBugs and
PMD to analyse each of the considered versions. The
presented times have been measured in a AMD Turion x2
64, 2.0 GHz CPU, with 2 GB RAM and operating system
Ubuntu 9.04. As we can observe, the time to execute
FindBugs has ranged from 28 to 48 min. On the other hand,
the time to execute PMD has ranged from 12 to 20 min.
This difference reflects the fact that the analysis performed
by FindBugs is more complex, requiring for some warnings
control and data flow intraprocedural analysis.

Table 1 Eclipse versions, including their size (MLOC = million
lines of code) and the execution time for the FindBugs and PMD
tools (in minutes)

Version Date MLOC FB time PMD time
3.0 June, 2004 1.004 28 12
3.1 June, 2005 1.210 31 13
3.2 June, 2006 1.440 39 14
3.3 June, 2007 1.585 42 16
3.4 June, 2008 1.771 48 20

www.ietdl.org

4.2 FindBugs results

Evaluated warnings: We have evaluated only warnings located
in packages internal to the Eclipse platform (i.e. packages
org.eclipse. *). Particularly, since FindBugs works at
the bytecode level, it can report warnings located in external
libraries (e.g. jar files). However, such warnings have been
ignored in our experiment since they are not detected by PMD.

For the Eclipse versions considered in the study, Table 2
presents the total number of warnings reported by FindBugs
and the number of warnings considered in our study. As
can be observed, most of the ignored warnings are due to
their location in external libraries (column B) than to
renamed program elements (column C). Table 2 also shows
a slightly reduction in the warnings density from version
3.0 (0.84 warnings/KLOC) to version 3.4 (0.63 warnings/
KLOC).

Warnings’ lifetime: Table 3 summarises the results from
running FindBugs over the five versions considered in the
experiment. The table shows the total number of warnings
considered in each evaluated Eclipse version. It also details
how many warnings are new and how many warnings have
been propagated from previous versions. For example, in
version 3.2, FindBugs has reported a total of 714 warnings,
including 376 warnings that have been detected for the first
time in version 3.0, 184 warnings detected for the first time
in version 3.1 and 154 warnings that are new, that is,
warnings that have been reported for the first time in
version 3.2.

By analysing Table 3, we can also track the lifetime of the
warnings reported in any of the evaluated versions. For
example, from the 503 warnings reported for the first time in
version 3.0, 394 warnings have been reported again in
version 3.1, 376 warnings have been reissued in version 3.2
and so on. In summary, from the 503 warnings detected
initially in version 3.0, 350 warnings have not been removed
in the last evaluated version (around 70%).

Table 2 Total number of warnings reported by FindBugs
(column A), warnings per KLOC, total number of warnings in
external libraries (column B), total number of warnings in
renamed program elements (column C) and total number of
warnings considered in the experiment (column D)

Version Total A/KLOC External Renamed D=A-B—-C D/A

(A) (B) (C)
3.0 848 0.84 234 111 503 59%
3.1 887 0.73 231 59 597 67%
3.2 1043 0.72 276 53 714 68%
3.3 1162 0.73 336 24 802 69%
3.4 1111 0.63 142 0 969 87%

Table 3 Warning's lifetime as reported by FindBugs

Versions #Warnings

3.0 3.1 3.2 3.3 3.4
3.0 503 394 376 355 350
3.1 - 203 184 175 177
3.2 - - 154 142 130
3.3 - - - 130 122
3.4 - - - - 190
Total 503 597 714 802 969

IET Softw., 2011, Vol. 5, Iss. 4, pp. 366-374
doi: 10.1049/iet-sen.2009.0083

369
© The Institution of Engineering and Technology 2011

www.ietdl.org

Table 4 Relevant warnings (%), as reported by FindBugs

Version Lifetime’s threshold

12 months 24 months 36 months
3.0 21.7 25.2 29.4
3.1 9.4 13.8 12.8
3.2 7.8 15.6 -
3.3 6.2 - -

Relevant warnings: In this first case study, we consider thata
warning is relevant when its lifetime is inferior than a time
threshold 7. Table 4 shows the percentage of relevant
warnings for the following values of #: 12, 24 and 36 months.
For version 3.2, the threshold of 36 months exceeds the
duration of the experiment, and therefore has not been
calculated. Similar observation holds for 24 and 36 months
in version 3.3.

As presented in Table 4, the percentage of relevant warnings
has ranged from 6.2% (version 3.3, t = 12 months) to 29.4%
(version 3.0, =36 months). In summary, in the best
evaluated scenario, Eclipse’s developers have removed only
29.4% of the warnings reported by FindBugs.

Most common warnings: In order to understand why
developers — after three years — have not removed most of the
reported warnings, Table 5 presents the four most common
warnings reported by FindBugs when applied to Eclipse 3.0.

The warnings included in Table 5 — representing more than
71% from the total number of reported warnings — are briefly
described next:

e MS_SHOULD_BE_FINAL: This warning, which
represents 38% from the total number of warning
occurrences, is reported when FindBugs detects a static field
not declared as final. FindBugs’ developers have classified
such declarations as a warning because mutable static fields
could be changed by malicious code or by accident from
another package. However, this warning category is only
relevant in systems that access sensitive data. Certainly, this
is not the case of development platforms, such as Eclipse.

e ST WRITE_TO_STATIC_FROM_INSTANCE_METHOD:
This warning, which counts for almost 19% from the total
number of warning occurrences, is reported when a non-
static method writes to a static field. FindBugs’ developers
claim that this kind of code is tricky to get correct if multiple
instances are being manipulated. In fact, according to FindBugs
categories, this warning is classified as dodgy code.

e HE_EQUALS_NO_HASHCODE: This warning, counting
for more than 7% from the total number of warnings, is
reported when a class overrides equals (Object), but
does not override hashCode (). Therefore the class may
violate the invariant that equal objects must have equal
hashcodes. This warning is classified as a bad practice.

Table 5 Most common warning categories (Eclipse 3.0)

Warning Category Occurrence %
MS_SHOULD_BE_FINAL malicious code 191 38.0
ST_WRITE_TO_STATIC_FROM_ dodgy 95 18.9
INSTANCE_METHOD

HE_EQUALS_USE_HASHCODE bad practice 38 7.5
MS_MUTABLE_ARRAY malicious code 35 7.0
Total - 359 71.4

370
© The Institution of Engineering and Technology 2011

e MS_MUTABLE_ARRAY: This warning is reported when
a static final field that references an array can be accessed by
malicious code or by accident from another package. In this
way, by accessing this field, it is possible to freely modify
the contents of the array. Once more, this represents a
warning that is important only in systems that access
sensitive data or systems with restrictive security
requirements.

In summary, the mentioned warnings denote recommended
programming practices (e.g. HE_EQUALS_NO_HASH
CODE) or warnings that are relevant only in particular
application domains (e.g. MS_SHOULD_BE_FINAL). It is
also important to mention that (a) FindBugs has ranked the
four mentioned warnings as high-priority; (b) none of the four
mentioned warnings are from the correctness category.

Discussion: Based on the results from Table 4, we initially
concluded that at least in our Eclipse case study most of the
warnings reported by FindBugs are not relevant. On the
other hand, the results from Table 5 show that FindBugs
consider as high-priority warnings that denote suspicious,
tricky or non-standard code and warnings that are important
only in particular application domains. To better support
this last conclusion, we have executed again FindBugs over
the five Eclipse versions, but configured the tool to just
report high-priority warnings from the correctness category.
Table 6 reports the lifetime of the warnings in this category.
As can be observed, correctness warnings represent from
10.8 to 12.1% from all warnings detected by FindBugs.
Table 7 presents the percentage of relevant warnings in this
category.

When comparing Tables 4 and 7, we observe a considerable
increase in the percentage of relevant warnings. For example,
in the best scenario from Table 4, 29.4% of the warnings
have been classified as relevant. When restricting the
analysis to just warnings in the correctness category, this
percentage has increased to 64%, as presented in Table 7. On
the other hand, in the worst scenario from Table 4, just 6.2%

Table 6 Warning's lifetimes (just correctness category), as
reported by FindBugs

Versions #Warnings

3.0 3.1 3.2 3.3 3.4
3.0 61 35 28 22 17
3.1 - 35 25 23 23
3.2 - - 24 17 15
3.3 - - - 33 28
3.4 - - - - 29
Total 61 70 77 95 112
% all categories 12.1 11.7 10.8 11.8 11.6

Table 7 Relevant correctness warnings (%), as reported by
FindBugs

Version Lifetime’s threshold

12 months 24 months 36 months
3.0 42.6 54.1 64.0
3.1 28.6 34.3 34.3
3.2 29.2 375 -
3.3 15.2 - -

IET Softw., 2011, Vol. 5, Iss. 4, pp. 366-374
doi: 10.1049/iet-sen.2009.0083

Table 8 Most common correctness warnings (Eclipse 3.0), as
reported by FindBugs

Warning Occurrence %
NP_NULL_ON_SOME_PATH 14 23.0
RCN_REDUNDANT_NULLCHECK_ 7 11.5
WOULD_HAVE_BEEN_A_NPE

NP_ALWAYS_NULL 6 9.8
RV_RETURN_VALUE_IGNORED 5 8.2
Total 32 52.5

of the warnings have been classified as relevant. When
restricting the analysis to correctness warnings, this
percentage has increased to 15.2%.

Table 8 presents the four most common warnings from the
correctness category (as reported in Eclipse 3.0). In this table,
the first three warnings are related to dereferencing a null
pointer, which is clearly a bug in Java programs. Not
surprisingly from the 32 warnings presented in this table,
27 warnings have been fixed in later versions of the Eclipse
platform.

Conclusions: At least as demonstrated by this first case
study, it is fundamental that developers configure FindBugs
to report warnings from categories that make sense in their
systems. In this way, the number of non-relevant warnings
— or false positives — reported by the tool is reduced by a
considerable amount. Proceeding in this way, we have
achieved relevance rates superior to 50% in some of the
evaluated scenarios.

4.3 PMD results

Evaluated warnings: For each Eclipse version, Table 9
presents the total number of warnings reported by PMD and
the total number of warnings considered in our study. With

Table 9 Total number of warnings reported by PMD (column A),
warnings per KLOC, number of warnings in renamed program
elements (column B) and number of warnings considered in the
experiment (column C)

www.ietdl.org

Table 10 Warning's lifetime as reported by PMD

Version #Warnings
3.0 3.1 3.2 3.3 3.4

3.0 3990 3832 3688 3594 3582
3.1 - 975 918 889 877
3.2 - - 842 806 790
3.3 - - - 804 784
3.4 - - - - 816
Total 3990 4807 5448 6093 6849

PMD, we only discarded warnings in renamed program
elements, since the tool does not analyse external JAR files.

Warnings’ lifetime and relevance: Table 10 summarises
the results from running PMD over the five versions of the
Eclipse platform considered in the experiment. As we can
observe in this table, PMD generates much more warnings
than FindBugs. For example, while FindBugs has reported
969 warnings for Eclipse 3.4, PMD has reported 6849
warnings (an increase of 607%). However, PMD does not
present an impressive rate of relevant warnings, as reported
in Table 11. In the best scenario, only 10.1% from the
reported warnings have been classified as relevant (Eclipse
3.1, t = 36 months).

Table 12 shows the number of occurrences for each
warning reported by PMD when executed over Eclipse 3.0.
The table also shows how many warnings have been
removed in later versions of the system. Owing to our
previous filtering of warnings related to naming and style
conventions, PMD has reported only 11 types of warnings
in this Eclipse version. From such warnings, ten warnings
are from the following rule sets: design rules (e.g.
TooFewBranchesForASwitchStatement), strict exception
rules (e.g. AvoidThrowingNullPointerException) and
controversial rules (e.g. AvoidUsingShortType). In fact,
from the reported warnings, just DoubleCheckedLocking

Table 11 Relevant warnings (%), as reported by PMD

Version Lifetime’s threshold

Version Total (A) A/KLOC Renamed(B) C=A-B C/A

12 months 24 months 36 months
3.0 6176 6.15 2186 3990 65%
3.1 6961 5.75 2154 4807 69% 3.0 4.0 7.6 9.9
3.2 7820 5.43 2372 5448 70% 3.1 5.8 8.8 10.1
3.3 8326 5.25 2233 6093 73% 3.2 4.3 6.2 -
3.4 9129 5.15 2280 6849 75% 3.3 25 - -
Table 12 Warnings reported by PMD (Eclipse 3.0)
Warning Rule set Occurrence % Removed
EmptyMethodInAbstractClass Design_Rules 1284 32.2 62

AvoidUsingShortType

Controversial_Rules 1232 30.9 151

ConstructorCallsOverridableMethod Design_Rules 714 17.9 126
TooFewBranchesForASwitchStatement Design_Rules 307 7.7 73
ReturnEmptyArrayRatherThanNull Design_Rules 223 5.6 45
AvoidThrowingRawExceptionTypes Strict_Exception_Rules 124 3.1 23
AvoidThrowingNullPointerException Strict_Exception_Rules 929 25 4
EqualsNull Design_Rules 6 0.1 1
DoubleCheckedLocking Basic_Rules 1 0.0 1
Total 3990 100 486
IET Softw., 2011, Vol. 5, Iss. 4, pp. 366-374 371

doi: 10.1049/iet-sen.2009.0083

© The Institution of Engineering and Technology 2011

www.ietdl.org

could possibly generate a defect. This warning is reported
when a variable assigned within a synchronised section is
used outside of this section.

Conclusions: We have concluded that PMD is not an
effective tool to report relevant warnings, according to our
classification of relevance based on lifetime. The rate of
relevant warnings reported by the tool has ranged from 2.5
to 10.1%. Furthermore, PMD generates much more
warnings than FindBugs. Particularly, we believe that PMD
is more effective to issue warnings related to stylistic
violations, such as in indentation and naming conventions.

5 Extended case study

To check whether our initial findings apply to other systems,
we have conducted an extended experiment involving 12
open-source systems. In this second study, we have made
two important decisions: (a) we have limited the evaluation
to the warnings reported by the FindBugs tool (since PMD
has generated numerous false positives in the Eclipse study);
(b) we have limited the evaluation to two versions of each
target system, with a time interval close to one year between
them. The systems — and their versions — considered in the
study are presented in Table 13.

Table 14 presents the lifetime of the warnings in this
second experiment — which have been calculated using the
same methodology from the Eclipse study. The first column
shows the number of warnings reported by FindBugs when

Table 14 High-priority (HP) warning's lifetime and relevance

System # HP warnings Relevance, %
Initial Final
1 Struts2 5 1 80.0
2 Pdfsam 5 3 40.0
3 JEdit 37 23 37.8
4 Jython 74 60 18.9
5 Tomcat 144 126 12.5
6 FreeMind 43 41 4.7
7 JabRef 149 148 0.7
8 Jung 15 15 0.0
9 JGraph 25 25 0.0
10 ArgoUML 42 42 0.0
11 Jetty 43 43 0.0
12 Xerces 48 48 0.0

In the next step, we have executed again FindBugs over the
same systems, but with the tool configured to just report high-
priority warnings from the correctness category. Table 15
summarises the results we have achieved in this second
execution. In five systems, we have achieved relevance rates
superior to 40%. However, in the remainder seven systems,
the relevance rates have been equal to zero.

Table 15 High-priority and correctness (HP and CT) warning'’s
lifetime and relevance

executed over the initial version of the considered systems. System #HPand CT Relevance (%) Relevance (%)
From those warnings, the second column also shows how warnings (lifetime) (developers)
many warnings have been reported again in the final — :
evaluated version. For example, five warnings have been Initial Final
reported for the initial version of the Struts2 system. From 1 Struts2 2 0 100.0 Z
those warnings, only one has remained in the final version 2 JEdit 15 3 80.0 _
evaluated in the study. Finally, the table reports the 3 Pdfsam 3 1 66.7 _
relevance of the detected warnings (i.e. the percentage of 4 Jython 10 4 60.0 _
warnings detected in the initial version and that have been 5 Tomcat 24 14 4.7 _
removed in the final version). In only three systems we 6 JabRef 7 7 0.0 85.7
have achieved relevance rates close or superior to 40% 7 Jetty 4 0.0 75.0
(Struts2, Pdfsam and JEdit). For the remainder nine 8 ArgoUML 11 11 0.0 54.5
systems, the relevance rates have been inferior to 20%. 9 FreeMind 6 6 0.0 16.6
Such numbers are compatible with the results described in 10 Jung 3 3 0.0 0.0
the Eclipse case study. They reinforce our initial argument 11 JGraph 2 2 0.0 0.0
that the general-purpose, high-priority warnings reported by 12 Xerces 13 13 0.0 0.0
FindBugs are not relevant.
Table 13 Systems evaluated in the extended case study
System Initial version Final version

Number Date KLOC Number Date KLOC Interval (days)
1 JEdit 4.0.3 06/2002 421 4.1 05/2003 46.9 343
2 Jung 1.7.1 10/2005 30.6 1.75 10/2006 31.8 363
3 FreeMind 0.9.0b17 05/2008 38.4 0.9.0RC4 05/2009 39.6 381
4 JGraph 5.10.2.0 11/2007 14.8 5.12.2.1 11/2008 15.0 350
5 ArgoUML 0.26 09/2008 135.4 0.28.1 08/2009 134.5 323
6 Tomcat 5.5.9 10/2005 116.9 6.0.0 10/2006 117.6 371
7 Struts2 2.0.14 11/2008 38.6 2.1.8.1 11/2009 75.1 354
8 Jetty 6.1.14 11/2008 63.1 6.1.22 11/2009 67.4 368
9 Xerces 2.71 7/2005 825 2.8.1 9/2006 84.0 414
10 Jython 2.5a3 09/2008 74.1 2.5.1rc3 09/2009 156.3 378
1 JabRef 2.5b 04/2009 55.0 2.6b3 03/2010 57.0 320
12 Pdfsam 1.1.2 04/2009 12.7 2.2.0 03/2010 19.9 358
372 IET Softw., 2011, Vol. 5, Iss. 4, pp. 366-374

© The Institution of Engineering and Technology 2011

doi: 10.1049/iet-sen.2009.0083

Therefore, since in more than 50% of the systems we have
achieved results different from Eclipse, we decided to directly
contact the system developers. We posted a message in the
bug tracker of each system, with a brief description about
the reported warnings. In this message, we also asked the
developers to evaluate the importance of the warnings. As
presented in the last column of Table 15, after the feedback
from the developers, the warnings reported in three systems
have been considered relevant (JabRef, Jetty and
ArgoUML). In such cases, the developers have fixed the
warnings in the source code.

On the other hand, in the case of four systems, the developers
have classified the high-priority warnings from the correctness
category as false positives (with the sole exception of one
warning in FreeMind). For example, FreeMind’s developers
have not considered relevant a warning informing that some
calls to equals would evaluate to false at runtime (in fact,
they claimed this should not always be the case). Jung’s
developers have not agreed about warnings reporting an
incorrect format argument in a String. format call. They
argued that the resulting string is not a ‘pretty string’, but that
the calls are still ‘semantically valid’. For Jung, FindBugs
has issued warnings about tests for equality to
Double.NaN (i.e. code that checks to see if a double is
equal to the special ‘not a number (NaN)’ value; however,
because of its special semantics, no value is equal to NaN).
Although classifying the warnings as ‘fair enough’, one of
the Jung’s developer said he is not too worried about them,
since they have been reported in a legacy codebase. Finally,
Xerces’ developers have classified the warnings as irrelevant
because they have been detected in dead code (i.e. code that
is not called anymore).

Conclusions: The extended case study has contributed to
strengthen our initial conclusions for Eclipse. Basically, the
experience with 12 other systems has showed the importance
of configuring the tool to report the most adequated
warning’s categories. When considering warnings from all
categories in nine out of 12 systems, we have observed rates
of relevance inferior to 20%. Since the results have been
compatible with the Eclipse study (and to our personal
evaluation of the reported warnings), we decided not to
contact the developers about such general-purpose warnings.
On the other hand, in five out of 12 systems we have
observed warnings’ lifetime similar to the Eclipse study after
restricting the analysis to high-priority and correctness
warnings. After contacting the developers, we have
concluded about the relevance of the warnings reported in
three more systems. Finally, in the systems where the
developers have classified the warnings as not relevant, the
arguments have not been technical (e.g. the result is still
‘semantically valid’, the developers have ‘limited time to
work on the project’ etc.).

6 Threats to validity

In this section, we discuss potential threats to the validity of our
study. As usual in empirical studies in software engineering,
we have arranged possible threats in three categories:
external validity, internal validity and construct validity [20].

External validity: This form of validity assesses the degree
to which we can extend the results of a study to a wider
population. Although we have evaluated more systems than
in similar studies described in the literature, we acknowledge
that our results may not be representative of all (open-source)
software systems. Particularly, factors such as system’s size
and maturity and the experience of the community of

IET Softw., 2011, Vol. 5, Iss. 4, pp. 366-374
doi: 10.1049/iet-sen.2009.0083

www.ietdl.org

developers can have a fundamental impact on the type of
study reported on this paper. Finally, only two tools have
been evaluated in the study. However, since FindBugs and
PMD are the two most popular Java-based bug-finding tools,
we believe that our conclusions are at least representative for
tools available in this language. On the other hand, we stress
that they cannot be generalised to memory-unsafe languages,
like C and C++.

Internal validity: This form of validity assess whether the
study findings are due to controlled variables or to unknown
causes. In order to discard uncontrolled interference in the
study, we have, for example, checked with Eclipse
developers whether FindBugs or PMD are applied as part of
their regular building process. The developers have
confirmed to us that they do not use neither of the tools in the
Eclipse development cycle.

Construct validity: This form of validity assesses the ability
to draw statistically correct conclusions from the results
produced by the experiments. In other words, the goal is to
evaluate whether the proposed conclusions are not affected
by misleading data. For example, as mentioned in Section
3, a warning signature is a quadruple with an abbreviation
for the warning description and the warning location in the
code, including package, class and method name. For this
reason, to avoid misleading lifetime measures due to
refactorings, for a given version, we have evaluated only
warnings located in program elements present in all other
versions considered in the study.

7 Conclusions

We have initially determined the lifetime of the warnings
reported by two popular Java-based bug-finding tools —
FindBugs and PMD — when executed over five stable releases
of the Eclipse platform. Next, we have repeated this
experiment to other 12 open-source systems. Our findings can
be summarised in the following way:

e When using FindBugs, it is fundamental that developers
configure the tool to just report warnings from categories that
make sense in their systems. In this way, the number of non-
relevant warnings — or false positives — reported by the tool
is reduced by a considerable amount. In our case study,
proceeding in this way we have achieved relevance rates
superior to 50% in some of the evaluated Eclipse versions
and in eight out of the 12 systems of the extended case study.
e PMD generates too many warnings to review all of them
manually. Moreover, the rate of relevance is not significant.
For example, in the scenarios considered in the Eclipse
study, at most 10.1% of the reported warnings have been
classified as relevant.

As future work, we have plans to expand our research in two
directions: (a) including new subjected systems preferably
from different domains (e.g. web-based systems and real-
time systems) (b) including new bug-finding tools (e.g. tools
for C/C++). We also have plans to design a meta-tool for
finding bugs. This tool could be used for example to track,
combine and correlate results from different bug-finding tools.

8 Acknowledgments

This research has been supported by grants from FAPEMIG,
CAPES and CNPq.

373
© The Institution of Engineering and Technology 2011

www.ietdl.org

9

1

374

References

Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh, W.:
‘Using static analysis to find bugs’, [EEE Softw., 2008, 25, (5),
pp. 22-29

Foster, J.S., Hicks, M.W., Pugh, W.: ‘Improving software quality with
static analysis’. 7th Workshop on Program Analysis for Software
Tools and Engineering (PASTE), 2007, pp. 83—84

Deissenboeck, F., Juergens, E., Hummel, B., Wagner, S., Mas y
Parareda, B., Pizka, M.: ‘Tool support for continuous quality control’,
IEEE Sofiw., 2008, 25, (5), pp. 60—67

Louridas, P.: ‘Static code analysis’, IEEE Sofiw., 2006, 23, (4),
pp. 58-61

Darwin, L.F.: ‘Checking C programs with Lint’ (O’Reilly, 1988)
Johnson, S.C.: ‘Lint: A C program checker’. Technical report 65, Bell
Laboratories, December 1977

Larus, J.R., Ball, T., Das, M., ef al.: ‘Righting software’, IEEE Softw.,
2004, 21, (3), pp. 92-100

Hovemeyer, D., Pugh, W.: ‘Finding bugs is easy’, SIGPLAN Notices,
2004, 39, (12), pp. 92—-106

Copeland, T.: ‘PMD applied’ (Centennial Books, 2005)

Microsoft Corporation: ‘FxCop home page’, available at http://msdn.
microsoft.com/en-us/library/bb429476(VS.80).aspx

Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y.:
‘Evaluating static analysis defect warnings on production software’.
7th Workshop on Program Analysis for Software Tools and
Engineering (PASTE), 2007, pp. 1-8

© The Institution of Engineering and Technology 2011

12

13

14

15

16

17

18

19

20

Kim, S., Emst, M.D.: ‘Which warnings should I fix first?’. 15th
Int. Symp. on Foundations of Software Engineering (FSE), 2007,
pp. 45-54

Kremenek, T., Engler, D.R.: ‘Z-ranking: using statistical analysis to counter
the impact of static analysis approximations’. 10th Int. Symp. on Static
Analysis (SAS), 2003, (LNCS, 2694), pp. 295-315

Zheng, J., Williams, L., Nagappan, N., Hudepohl, J.P., Vouk, M.A.: ‘On
the value of static analysis for fault detection in software’, I[EEE Trans.
Sofitw. Eng., 2006, 32, (4), pp. 240—253

Wagner, S., Aichner, M., Wimmer, J., Schwalb, M.: ‘An evaluation of
two bug pattern tools for Java’. Ist Int. Conf. on Software Testing,
Verification, and Validation (ICST), 2008, pp. 248—257

Rutar, N., Almazan, C.B., Foster, J.S.: ‘A comparison of bug finding
tools for Java’. 15th Int. Symp. on Software Reliability Engineering
(ISSRE), 2004, pp. 245-256

Wagner, S., Jirjens, J., Koller, C., Trischberger, P.: ‘Comparing bug
finding tools with reviews and tests’. 17th Int. Conf. Testing of
Communicating Systems (TestCom), 2005, (LNCS, 3502), pp. 40—55
Nagappan, N., Ball, T.: ‘Static analysis tools as early indicators of pre-
release defect density’. 27th Int. Conf. on Software Engineering (ICSE),
2005, pp. 580-586

Kim, S., Ernst, M.D.: ‘Prioritizing warning categories by analyzing
software history’. 4th Int. Workshop on Mining Software Repositories
(MSR), 2007, pp. 27-30

Perr, D.E., Porter, A.A., Votta, L.G.: ‘A primer on empirical studies
(tutorial)’. Tutorial Presented at 19th Int. Conf. on Software
Engineering (ICSE), 1997, pp. 657—658

IET Softw., 2011, Vol. 5, Iss. 4, pp. 366-374
doi: 10.1049/iet-sen.2009.0083

