
Static correspondence and correlation between field
defects and warnings reported by a bug finding tool

Cesar Couto • João Eduardo Montandon •

Christofer Silva • Marco Tulio Valente

� Springer Science+Business Media, LLC 2011

Abstract Despite the interest and the increasing number of static analysis tools for

detecting defects in software systems, there is still no consensus on the actual gains that

such tools introduce in software development projects. Therefore, this article reports a

study carried out to evaluate the degree of correspondence and correlation between post-

release defects (i.e., field defects) and warnings issued by FindBugs, a bug finding tool

widely used in Java systems. The study aimed to evaluate two types of relations: static

correspondence (when warnings contribute to find the static program locations changed to

remove field defects) and statistical correlation (when warnings serve as early indicators

for future field defects). As a result, we have concluded that there is no static corre-

spondence between field defects and warnings. However, statistical tests showed that there

is a moderate level of correlation between warnings and such kinds of software defects.

Keywords Bug finding tools � Field defects � Software quality assurance tools

1 Introduction

There is a growing interest in static analysis techniques and tools for detecting bugs in

software systems (Ayewah et al. 2008; Bessey et al. 2010; Foster et al. 2007; Louridas

C. Couto � J. E. Montandon � M. T. Valente (&)
Department of Computer Science, UFMG, Belo Horizonte, Brazil
e-mail: mtov@dcc.ufmg.br

C. Couto
e-mail: cesarfmc@dcc.ufmg.br

J. E. Montandon
e-mail: joao.montandon@dcc.ufmg.br

C. Couto � C. Silva
Department of Computing, CEFET-MG, Belo Horizonte, Brazil

C. Silva
e-mail: christofer@dcc.ufmg.br

123

Software Qual J
DOI 10.1007/s11219-011-9172-5

2006). Usually, these tools work by looking for violations in recommended program-

ming practices, instead of checking whether a system meets its specification. As

examples of the bugs detected by such tools, we can mention null pointer dereferences,

improper use of synchronization primitives, division by zero, and overflow in arrays. In

summary, such tools extend and improve the warning messages typically reported by

compilers. Additionally, they can check coding style guidelines, including naming

conventions and indentation patterns. Among the many bug finding (or bug pattern)

tools that exist, we can mention Lint (Johnson 1977) and PREfix/PREfast (Larus et al.

2004) (for C/C?? programs), FindBugs (Hovemeyer and Pugh 2004) and PMD

(Copeland 2005) (for Java programs) and FxCop (Microsoft Corporation http://msdn.

microsoft.com/en-us/library/bb429476 (VS.80).aspx.) FxCop home page (for .NET

programs).

Despite the increasing number of available bug finding tools, there is still no consensus

on the effective power of these tools to detect post-release defects (also called field

defects). More specifically, we still lack realistic exploratory studies that can help devel-

opers, maintainers and software quality managers to get clear answers for two central

questions:

• Question Q1 (Static correspondence): Is there a correspondence between the static

location of warnings and the program elements changed in order to remove field

defects? In others words, are the warnings issued by static analysis tools located in the

program elements changed by developers in order to remove field defects? If the

answers to these questions are affirmative, we will consider in this article that there is a

static correspondence between warnings and field defects. From a practical point of

view, the proposed definition for static correspondence means that a developer

designated to remove a field defect can take benefit from running a bug finding tool

before starting this task. Furthermore, the proposed definition supports the implemen-

tation of an automatic procedure for evaluating the static correspondence between

warnings and field defects, without requiring feedback from the developers in charge of

the maintenance task.

• Question Q2 (Correlation): Is there a statistical relation between warnings and field

defects? For example, the greater the number of warnings reported by a bug finding

tool, the greater will be the number of field defects observed later in the system? If

the answers to these questions are affirmative, we will consider in this article that

there is a correlation between warnings and field defects. From a practical point of

view, correlation means that a software project manager may consider the number of

warnings as an early indicator of the quality of a system. More specifically, managers

can establish that the new releases of a given system should have a warning density

inferior than a certain threshold.

Initially, we assess in the article the static correspondence between warnings

reported by FindBugs (Hovemeyer and Pugh 2004)—a widely used open source bug

finding tool for Java—and field defects. More specifically, we have evaluated the

usefulness of the warnings reported by FindBugs to detect and remove defects in three

medium-to-large size systems: Rhino (a JavaScript interpreter with 31 KLOC that is

developed as part of the Mozilla project), ajc (the most used AspectJ compiler, with

around 63 KLOC), and Lucene (an information retrieval software library, with around

24 KLOC). Additionally, in a second experiment, we have assessed the statistical

correlation between warnings generated by FindBugs and field defects reported for

thirty systems maintained by the Apache Foundation, totaling almost one and a half

Software Qual J

123

http://msdn.microsoft.com/en-us/library/bb429476
http://msdn.microsoft.com/en-us/library/bb429476

million lines of code. Our results show the existence of an important level of corre-

lation between these two variables.

The remainder of this article is organized as follows. In Sect. 2, we describe the

experiment designed to evaluate the existence of static correspondence between warnings

and field defects. Section 3 describes the study conducted to evaluate the level of corre-

lation between such variables. Section 4 summarizes the main lessons learned with the

reported experiences. In Sect. 5, we document the main risks and limitations of the study

described in this paper. Section 6 presents related work and Sect. 7 describes our

conclusions.

2 Static correspondence

Suppose a field defect d reported to a system. Suppose that C denotes the program elements

that must be changed in order to fix d. We consider that there is a static correspondence

between a warning w reported by a bug finding tool and the defect d if w has been reported

in one of the program elements in C. In other words, our assumption is that the causes of

d are restricted to the program elements in C (since they represent the only elements

changed in order to fix d). Therefore, warnings located in C have at least matched the

defective program elements. However, two important observations should be made about

this definition. First, it deliberately does not define the granularity of the program elements

considered in the set C. Particularly, in the experiment described in this section we will

only consider method level granularity. Second, it considers that there is a static corre-

spondence between w and d even when w persists in C after d has been removed (i.e., in

cases where developers have been able to fix d without removing w). However, our claim is

that despite not been removed, such warnings are relevant because they at least represent a

true alert for defective program elements (and therefore they can help maintainers to locate

such elements when starting a bug fixing task).

Three systems—Rhino, ajc, and Lucene—have been used in this first experiment. For

the first two systems, we have relied on the information available at the iBugs repository.1

iBugs stores the source code before and after the correction of several defects reported by

the users of the systems made available in the repository. Therefore, by comparing the

provided source code (before and after a fixed bug), we can determine the methods at the

aforementioned set C, i.e. the methods changed by the maintainers to fix a field defect

d. For Lucene, we have relied on the information available at the Jira issue tracking and

management system used by the projects hosted by the Apache Foundation.2 Jira stores

information about the source code files changed to fix defects reported by Apache’s users.

In addition, Jira provides the revision number of such files in the version-control system.

Therefore, it was possible to discover the source code before and after the correction of the

evaluated defects.

In iBugs, there are 32 issues (an issue may be a field defect, an improvement or new

feature) reported to the Rhino interpreter. These issues have been reported via Bugzilla3,

the bug tracking system normally used by the systems of the Mozilla Foundation. Fur-

thermore, iBugs provides information about 348 issues reported for the ajc compiler

1 http://www.st.cs.uni-saarland.de/ibugs.
2 https://issues.apache.org/jira/secure/IssueNavigator.jspa.
3 http://www.bugzilla.org.

Software Qual J

123

http://www.st.cs.uni-saarland.de/ibugs
https://issues.apache.org/jira/secure/IssueNavigator.jspa
http://www.bugzilla.org

(such issues have been reported by 13 developers involved in the ajc implementation,

also using Bugzilla). For Lucene, we have considered 90 post-release issues.

2.1 Data collection

In order to collect data to evaluate the degree of static correspondence between warnings

and field defects, we have performed the following tasks:

2.1.1 Filtering the maintenance requests

For Rhino and ajc, we have carefully read and evaluated the free text of each maintenance

request reported via Bugzilla. The aim was to distinguish between entries demanding corrective

maintenance tasks (field defects) and entries that in fact are requests for adaptive, evolutive or

perfective maintenance. As an example of the first case, we can mention the following bug

reported to the ajc compiler: there is not enough memory to compile an aspect developed by
the user. As an example of the second case, we can mention the following issue posted for the

Rhino interpreter: The system does not accept strings with more than 64 KB characters. For

Lucene, the process of filtering the maintenance requests was simpler, because Jira has a field

that classifies the issues as bugs, improvements, and new features.
In our study, we have evaluated only entries associated with corrective maintenance tasks,

because it makes no sense to expect a bug finding tool based on static analysis techniques to

help on adaptive, evolutive or perfective maintenance tasks. For each evaluated system,

Table 1 reports the number of entries classified as corrective maintenance and as the other

maintenance types. As can be observed in this table, the percentage of requests classified as

corrective has been 50% (for Rhino), 66% (for ajc), and 33% (for Lucene).

2.1.2 Calculating the static correspondence

First, we have downloaded the versions before and after each maintenance request we have

classified as corrective. For Rhino and ajc, the source code has been retrieved directly

from the iBugs repository. For Lucene, the ID of the SVN transaction responsible for fixing

a given bug b is available in the Jira issue tracking system. Using this ID, we have accessed

SVN to retrieve the source code of the version where b has been fixed. We have also

retrieved from SVN the version of the system with an identifier equal to (ID-1), i.e., the

version just before fixing bug b.

In a second step, we have compared the versions before and after fixing the evaluated

bugs in order to find the defective methods. For this purpose, suppose that Mb and Ma are,

respectively, the methods in the versions before and after fixing a given field defect d. In

order to calculate Mb and Ma we have implemented a small parser for Java. From the

Abstract Syntax Tree (AST) generated by this parser, it was possible to retrieve te

Table 1 Classification of the
maintenance requests

Maintenance types Rhino ajc Lucene

Qty % Qty % Qty %

Corrective 16 50 231 66 30 33

Other types 16 50 117 34 60 67

Total 32 100 348 100 90 100

Software Qual J

123

following information for each method: (a) signature, including name, parameters and

return type; (b) a string representing the method’s body. Using this information provided

by the AST, the set C with the defective methods associated to d has been calculated in the

following way:

C ¼ fmi 2 Mb j 9mj 2 Ma; mi:sigðÞ ¼ mj:sigðÞ; mi:bodyðÞ 6¼ mj:bodyðÞg
[fmi 2 Mb j 6 9mj 2 Ma; mi:sigðÞ ¼ mj:sigðÞg

where m.sig() returns m’s signature and m.body() returns a string with m’s body. Essen-

tially, C includes the methods mi in the version before fixing the defect for which there is a

method mj in the version after fixing the defect with the same signature, but with a

modified body. Additionally, C includes the methods in the version before the fix that have

been removed in the version after fixing the defect.

Finally, we have executed the FindBugs tool in its default configuration over the version

of the system before fixing the field defect. The warnings detected in the methods located

in the set C have been counted; the remaining warnings have been discarded. This pro-

cedure has been based on the following hypothesis: a bug finding tool helps maintainers to

detect and fix field defects when it is able to indicate warnings in the methods that must be

changed to correct these defects.

2.2 Results

Table 2 presents the number of versions for which FindBugs has raised warnings in the set

of methods changed to fix field defects. As shown in this table, in only two out of the 16

versions of the Rhino interpreter FindBugs has been able to issue at least one warning in

the set of methods changed to fix the reported field defects. For the ajc compiler,

FindBugs has issued warnings located in the changed methods for only 11% of the versions

evaluated in the experiment. For Lucene, this percentage was 17%.

Figure 1 provides detailed information on the number or warnings raised by FindBugs

in the methods changed when fixing the evaluated field defects. In such figures, the x-axis

contains the ID (revision number in the version-control system) of the versions with at least

one warning in the changed method. The y-axis indicates the number of warnings triggered

by FindBugs in such methods. As shown by the figures, in most cases FindBugs has raised

just one or two warnings in the set of changed methods (with the exception of two methods

from the Lucene system, which have five and eight warnings).

2.2.1 Analysis of the results

By considering the results in Table 2 and Fig. 1, we can conclude that FindBugs has

provided minimal indications about the methods responsible for the defects considered in

Table 2 Number of versions
with and without warnings in the
methods changed to fix field
defects

Versions Rhino ajc Lucene

Qty % Qty % Qty %

Changed methods without
warnings

14 88 206 89 25 83

Changed methods with
at least one warning

2 12 25 11 5 17

Total 16 100 231 100 30 100

Software Qual J

123

the experiment. Based on such results, our answer to question Q1 is negative: we have not

observed evidences toward a static correspondence between field defects and warnings

reported by FindBugs. More specifically, even relying on a weak precondition for matching

warnings to field defects (i.e., a definition that does not check whether the warnings

semantically relate to the changes applied to fix a defect), FindBugs has not been able to

raise warnings in most of the defective methods. In other words, the warnings triggered by

the tool would not have helped the maintainers to detect, understand, and remove the field

defects evaluated in the study.

2.2.2 Precision and recall

To complement our previous analysis, we also measured the precision and recall of the

warnings raised by FindBugs. By measuring precision, our goal was to provide information

on the number of false positives raised by FindBugs, i.e., methods with warnings but that

have not been changed to fix bugs. On the other hand, by measuring the recall our intention

was to show information on the number of false negatives, i.e., the absence of warnings in

methods changed to fix defects. First, we measured precision at the method level in the

following way:

v85880 v204210

Rhino

Versions

W
ar

ni
ng

s
in

 c
ha

ng
ed

 m
et

ho
ds

0
1

2
3

4
5

v759556 v675485 v581625 v519006 v518262

Lucene

Versions

W
ar

ni
ng

s
in

 c
ha

ng
ed

 m
et

ho
ds

0
1

2
3

4
5

v29186 v39626 v43783 v49638 v69011 v72699 v83563 v116949 v125405 v128744 v135780 v147801 v153490

ajc

Versions

W
ar

ni
ng

s
in

 c
ha

ng
ed

 m
et

ho
ds

0
2

4
6

8

Fig. 1 Number of warnings in changed methods

Software Qual J

123

precision ¼ number of changed methods with at least one warning

number of methods with at least one warning

To measure recall, we have considered a method as relevant when it has been changed to

fix a field defect. Moreover, we consider that FindBugs detects a relevant method when it

raises at least one warning in such method. Based on these assumptions, we have calcu-

lated recall in the following way:

recall ¼ number of changed methods with at least one warning

number of changed methods

Table 3 shows the values measured for recall and precision for the systems considered in

this first experiment. Considering the versions evaluated in the experiment, this table

reports the following results: maximum value (Max), minimum value (Min), mean,

median, and standard deviation (Std Dev). Three conclusions can be derived from such

results:

• FindBugs raises a large number of warnings. We have counted 3.6 ± 0.3, 9.8 ± 0.7,

and 6.3 ± 0.5 warnings/KLOC for the evaluated versions of the systems Rhino, ajc,

and Lucene, respectively (a ± s means average a with standard deviation s).

• Due to the large number of warnings, the precison results are extremely low:

3.3 ± 9.4%, 5.6 ± 19.6%, and 6.8 ± 20.5%, for the systems Rhino, ajc, and Lucene,

respectively.

• As another consequence of the large number of warnings, the recall results have also

been low: 3.8 ± 12.6%, 6.9 ± 22.4%, 3.7 ± 18.2%, for the systems Rhino, ajc, and

Lucene, respectively.

Table 3 Precision and recall
Warnings # Warnings/

KLOC
Precision
(%)

Recall
(%)

Rhino (16 versions)

Max 119 3.9 33.3 50.0

Min 101 2.6 0.0 0.0

Mean 112.6 3.6 3.3 3.8

Median 113.0 3.7 0.0 0.0

SD 5.5 0.3 9.4 12.6

ajc (206 versions)

Max 938 11.7 100.0 100.0

Min 225 7.0 0.0 0.0

Mean 631.0 9.8 5.6 6.9

Median 813.0 9.9 0.0 0.0

SD 267.9 0.7 19.6 22.4

Lucene (30 versions)

Max 205 6.9 100.0 100.0

Min 118 4.4 0.0 0.0

Mean 152.7 6.3 6.8 3.7

Median 152 6.3 0.0 0.0

SD 30.8 0.5 20.5 18.2

Software Qual J

123

3 Correlation

To correlate warnings to defects, we have considered 30 systems from the Apache

Foundation. Table 4 presents detailed information about our target systems. The numbers

about lines of code have been obtained using the JavaNCSS tool.4 The presented results

consider only classes in the core packages of each system (i.e., packages matching

org.apache.[system].*) and ignore comments and blank lines. In total, the sys-

tems evaluated in this second experiment have almost one and a half million lines of code.

Furthermore, they meet the following criteria: (a) they represent medium-sized to large and

complex systems (the smallest system has 9.8 KLOC and the largest one has 178.8 KLOC);

(b) their bytecode (in the format of a JAR file) is publicly available; (c) they have a

well-documented history of defects.

The following tasks have been performed to collect the data necessary for the corre-

lation study:

1. We have downloaded the JAR file of each of the systems considered in the study (this

file has been downloaded from the software repository of the Apache Foundation).

2. We have executed FindBugs two times on each of the JAR files downloaded in the

previous step. In the first execution, we have relied on FindBugs default configuration.

In the second execution, the tool has been configured to just report high-priority

warnings, i.e., warnings denoting code with a high probability to lead to defects. The

total number of warnings reported on each of such executions has been collected.

3. We have accessed the Jira bug tracking system used by the Apache Foundation to

collect the number of defects for the systems considered in the study. Basically, we

used Jira to collect the number of defects (or bugs) that have been fixed in the first

version after the version considered in the study. For example, for Lucene, we have

counted the number of warnings on version 2.3.2. Therefore, we used the Jira system

to get the number of defects fixed in version 2.4 (the next version, after 2.3.2). In this

way, we can assure that the defects considered in the study actually existed in the

versions used to count the number of warnings.

Table 5 presents the following data collected after the aforementioned tasks: number of

warnings reported by FindBugs in its default configuration (column FB), number of high-

priority warnings reported by FindBugs (column FBH), number of defects fixed in the first

version after the version considered in the study (column BUGS). Finally, the last three

columns of Table 5 show the density of the reported warnings, i.e., the values at columns

FB, FBH, and BUGS divided by the number of thousands of lines of source code (KLOC)

of the respective versions. Instead of absolute values, the goal is to correlate data that take

into account the size of the systems evaluated in the study.

Table 6 presents general statistics about the collected data. As can be observed in this

table, on average, FindBugs has reported 6.11 warnings and 1.57 high-priority warnings

per KLOC, i.e., the number of general warnings is almost four times greater than the

number of high-priority warnings.

3.1 Spearman’s rank correlation test

Spearman’s rank correlation test is a measure for the statistical correlation between two

variables (Sprent and Smeeton 2007). The test yields a coefficient between -1 (perfect

4 http://www.kclee.de/clemens/java/javancss.

Software Qual J

123

http://www.kclee.de/clemens/java/javancss

negative correlation) and ?1 (perfect positive correlation). Moreover, the test does not

measure the correlation between the absolute values of the involved variables, but the

correlation on the order of those values in a rank. The main advantage of Spearman is that

it can be applied to any data sample, i.e., it does not require the sample to meet a particular

distribution (Pfleeger 1995).5

Table 7 presents the Spearman’s coefficients expressing the correlation between the two

variables considered in this work: field defects (represented by the variable BUGS/KLOC)

Table 4 Systems used to correlate warnings and defects

System Version Date LOC Description

1 Struts2 2.0.6 18/02/07 14,466 Web application framework

2 CXF 2.2 18/03/09 106,225 Web service framework

3 ApacheDS 1.5.0 05/04/07 41,916 LDAP-based directory service

4 Jackrabbit 1.4 15/01/08 92,519 Content repository manager

5 Myfaces Core 1.2.0 17/07/07 20,185 JSF implementation

6 Myfaces Tomahawk 1.1.7 13/09/08 58,462 Custom JSF components

7 OpenJPA 1.0.0 23/08/07 101,787 Persistence API

8 Tuscany SCA 1 19/09/07 41,081 SOA-based framework

9 UIMA 2.1.0 07/03/07 80,763 Unstructured information mnger

10 Wicket 1.4.0 16/07/09 50,714 Web application framework

11 Hadoop Common 0.16.4 05/05/08 61,210 Utilities for Hadoop projects

12 Hadoop Hbase 0.2.0 05/08/08 30,504 Distributed database system

13 Ivy 2.1.0 08/10/09 25,779 Dependency manager system

14 James Server 2.2.0 16/06/04 15,499 Mail enterprise server

15 Lucene 2.3.2 06/05/08 44,585 Information retrieval library

16 Roller 3.1 23/04/07 30,879 Blog server

17 Shidig 1.1b1 22/07/09 18,679 OpenSocial container

18 Solr 1.3 12/09/08 28,656 Text search platform

19 Tapestry 4.1.2 27/06/07 31,772 Web application framework

20 Axis2 1 05/05/06 27,102 Web service framework

21 Geronimo 2.1 18/02/08 38,358 Application server

22 Xalan 2.6.0 29/02/04 46,213 XSLT implementation

23 Xerces 2.9.1 14/09/07 68,953 XML parser

24 Beehive 1 30/09/05 49,130 Java application framework

25 Derby 10.1.2.1 18/11/05 178,880 Relational database system

26 Cayenne 2.0.2 18/01/07 62,800 Object/Relational framework

27 XMLBeans 2.0.0 28/06/05 71,515 XML Parser

28 JDO 2.0.0 04/04/06 15,943 Persistence API

29 DdlUtils 1.0.0 28/06/07 10,541 Database Definition (DDL) API

30 iBatis 2.3.0 28/11/06 9,839 Object/Relational framework

5 Indeed, we have applied the Shapiro-Wilk test to check whether the number of warnings and the number
of defects reported in Table 5 follow a normal distribution. Because the test rejected the assumption of
normality at the level of 5% of significance, we decided to use the Spearman test to measure correlation.

Software Qual J

123

and warnings reported by FindBugs (represented by the following variables: FB/KLOC

and FBH/KLOC). The coefficients reported in this table have a significance level of at least

95% (p-value B 0.05) and they have been calculated using the R statistical tool.

Table 5 Absolute and relative data about warnings and defects

System FB FBH BUGS FB/KLOC FBH/KLOC BUGS/KLOC

1 Struts2 62 15 35 4.29 1.04 2.42

2 CXF 644 133 40 6.06 1.25 0.38

3 ApacheDS 332 114 61 7.92 2.72 1.46

4 Jackrabbit 400 65 109 4.32 0.70 1.18

5 Myfaces Core 81 10 43 4.01 0.50 2.13

6 Myfaces Tomahawk 182 43 25 3.11 0.74 0.43

7 OpenJPA 494 75 45 4.85 0.74 0.44

8 Tuscany SCA 242 63 22 5.89 1.53 0.54

9 UIMA 466 211 77 5.77 2.61 0.95

10 Wicket 163 29 12 3.21 0.57 0.24

11 Hadoop Common 421 224 138 6.88 3.66 2.25

12 Hadoop Hbase 343 95 35 11.24 3.11 1.15

13 Ivy 145 16 47 5.62 0.62 1.82

14 James Server 106 30 104 6.84 1.94 6.71

15 Lucene 461 121 66 10.34 2.71 1.48

16 Roller 378 57 87 12.24 1.85 2.82

17 Shidig 33 6 7 1.77 0.32 0.37

18 Solr 208 104 226 7.26 3.63 7.89

19 Tapestry 129 16 27 4.06 0.50 0.85

20 Axis2 183 44 82 6.75 1.62 3.03

21 Geronimo 296 72 53 7.72 1.88 1.38

22 Xalan 573 233 217 12.40 5.04 4.70

23 Xerces 196 60 49 2.84 0.87 0.71

24 Beehive 375 51 91 7.63 1.04 1.85

25 Derby 978 125 104 5.47 0.70 0.58

26 Cayenne 293 38 31 4.67 0.61 0.49

27 XMLBeans 290 173 9 4.01 2.42 0.13

28 JDO 98 25 78 6.15 1.57 4.89

29 DdlUtils 46 3 18 4.36 0.28 1.71

30 iBatis 55 3 18 5.59 0.30 1.83

Table 6 Characterization of the data collected about warnings and field defects

FB FBH BUGS KLOC FB/KLOC FBH/KLOC BUGS/KLOC

Max 978 233 226 178.88 12.40 5.04 7.89

Min 33 3 7 9.84 1.77 0.28 0.13

Mean 289.10 75.13 65.20 49.17 6.11 1.57 1.89

Median 266 58.50 48.00 41.50 5.70 1.15 1.42

SD 210.14 66.25 54.11 36.20 2.67 1.20 1.89

Software Qual J

123

3.1.1 Analysis of the results

As presented in Table 7, the results of the Spearman’s test show a statistical correlation

between the two variables considered in the study (field defects and warnings reported by

FindBugs). Essentially, when considering only high-priority warnings, the Spearman’s

coefficient was 0.36. When the correlation is extended to consider all kinds of warnings,

this coefficient has increased to 0.57. In other words, such degrees of correlation suggest

that warnings—specially default warnings—can be viewed as early indicators of the

quality of a system.

4 Lessons learned

This section discusses the main lessons learned on the study. First, although the experiment

about static correspondence has involved only three systems, it provides evidences that

FindBugs does not help to detect defective program elements. The main reason is that there

is a wide spectrum of field defects that can be reported for a system. Additionally, many

defects are related to logic or semantic errors (i.e., errors due to wrong results or unex-

pected behavior). For example, in the specific case of Rhino and ajc most errors are due

to source code in JavaScript or AspectJ that is not processed as expected. On the other

hand, the warnings reported by FindBugs are quite specific. Most of them are centered

on violations of recommending programming patterns (e.g., classes that implement

hashCode must also implement an equals method) and errors detected by local data

and control flow analysis (e.g. null pointer access).

Unlike the first experiment, the second study on correlation has presented positive

results. First, the literature describes studies assessing the application of static analysis

tools in real life systems. However, usually they focus on a single system (e.g., the

Windows operating system (Nagappan and Ball 2005) or SAP/R3 (Holschuh et al. 2009)).

Unlike these studies, in this article, we have evaluated thirty medium-sized systems,

maintained by the same organization (the Apache Foundation). Second, the experiment

about correlation has produced valuable data on the density of warnings reported by

FindBugs and on the density of field defects. For example, we have not observed extreme

densities of high-priority warnings (on average, 1.57 warnings per KLOC). Therefore, this

result rebuts the common criticism about the massive number of warnings generated by

static analysis tools (Kim and Ernst 2007; Wagner et al. 2005). More specifically, we

learned that the number of warnings can be managed when the tool is properly configured

to raise only high-priority warnings.

Finally, as another result of the study, we have observed a moderate level of correlation

between the number of warnings reported by FindBugs and the number of defects reported

by the users of the systems evaluated in the article. Particularly, the results obtained

through the Spearman’s rank correlation test suggest that systems with more warnings are

subjected to present more field defects after being released for use. Therefore, we conclude

Table 7 Spearman coefficients
FB/KLOC FBH/KLOC

BUGS/KLOC 0.57 0.36

p-value 0.00 0.05

Software Qual J

123

that bug finding tools like FindBugs can play an important role on assessing the quality of

the versions of a system.

5 Threats to validity

In this section, we discuss potential threats to the validity of our study. As usual, we have

arranged possible threats in three categories: external, internal, and construct validity

(Perry et al. 1997):

5.1 External validity

This form of validity refers to the degree to which we can extend the results of a study to a

wider population. In the study about static correspondence, we have considered three

systems. Particularly, Rhino and ajc were the only systems available at the iBugs

repository when the study has been realized. The reason for having only two systems in this

repository is simple: recovering the source code before and after fixing a given field defect

is not a trivial task, since in most systems we do not have a direct traceability between bugs

and release identifiers (Dallmeier and Zimmermann 2007). However, even by evaluating

just three systems, it was possible to assert the existence of an important gap between the

warnings generated by FindBugs and the large spectrum of field defects. This gap explains

the limited degree of static correspondence observed at Sect. 2.

Regarding the correlation study, it has been based on thirty systems from the Apache

Foundation, totaling almost one and a half million lines of source code. This sample is one

of the strengths of our study because besides including a credible number of systems, the

selected systems represent real-world and non-trivial applications, with a consolidated

number of users and a relevant history of bugs. On the other hand, our sample may be not

representative of industrial, non-open source-based systems.

Finally, both experiments have been based on a single bug finding tool. Moreover, they

should not be generalized to systems implemented in other languages, including unsafe

static languages (such as C and C??) or dynamic languages (such as Ruby or Python).

5.2 Internal validity

This form of validity evaluates whether the study findings are due to factors that have not

been controlled or measured in the experiment. In the case of the static correspondence

study, this risk is minimized because iBugs has been carefully constructed to provide

benchmarks for bug finding tools. However, we have not validated our classification of the

requests as corrective maintenance with the developers of the evaluated systems. Instead,

we have relied on the description provided by the end-users when opening the requests in

the Bugzilla tracking system. Although we acknowledge the absence of this validation as a

possible threat to the internal validity of the study, we have confidence on the proposed

classification, because end-users—at least in our specific study—usually provide very

detailed descriptions about their requests (presumably to maximize the chances of the

requests been processed quickly).

In the case of the correlation study, it was not possible to control the number of users

that accessed the versions considered in the study. This variable is important because in

systems with a large base of users, the number of field defects tends to be higher than in

systems with a reduced number. In other words, the ideal scenario would include only

Software Qual J

123

systems accessed by the same number of users, with a similar profile (experience users,

novice users and so on), with each user accessing the systems the same number of hours

per day. Clearly, setting this ideal scenario for real systems is not trivial. Therefore, to

control this threat, we have restricted our sample to well-know systems from a single

software organization. Such systems have a relevant base of users, most of them having a

similar profile (in general, the users of Apache systems are software developers).

5.3 Construct validity

This form of validity assesses whether the study findings are not due to misleading data or

errors committed during the experiment. In the study about static correspondence, we have

carefully filtered out field defects, in order to discard requests associated, for example, with

adaptive or perfective maintenance. A similar procedure has been followed in the second

part of the paper. However, in this case, it was easier to filter the defects, because we have

only considered defects explicitly classified as ‘‘fixed bugs’’ in the documentation available

at Jira.

6 Related work

Related work can be arranged in three groups: (a) studies on the relevance of bug finding

tools; (b) correlation studies including bug finding tools and (c) correlation studies on

software metrics.

6.1 Studies on the relevance of bug finding tools

Wagner et al. have evaluated the effectiveness of bug finding tools in two large systems

(Wagner et al. 2008). In their work, they have considered two tools: FindBugs and PMD.

Similar to our work, their goal was to assess the effectiveness of such tools to detect

defects that occur in the field. For the first evaluated system, they could not find a single

warning related to 72 reported field defects. For the second system, they found a causal

relation between four warnings and field defects. Therefore, their results are compatible

with the ones we have obtained in our first experiment. In fact, we have showed that neither

a weaker relation—as our notion of static correspondence—can be established between

warnings and the program elements changed to fix field defects.

Zheng et al. have followed the GQM paradigm to determine ‘‘whether automated static

analysis can help an organization to economically improve the quality of software prod-

ucts’’ (Zheng et al. 2006). Particularly, they have showed that the number of warnings

raised by static analysis tools can be a fairly good indicator of fault prone modules, which is

essentially the same conclusion we have reached on our second study, described in Sect. 3.

In a recent work, we have evaluated the lifetime of the warnings reported by FindBugs

when executed over five stable releases of the Eclipse platform (Araujo et al. 2011). We

have concluded that the number of false positives (by our criteria, warnings not removed

in subsequent releases) can be reduced to less than 50% when FindBugs is configured to

just trigger high-priority warnings. However, for the purpose of locating field defects,

restricting the analysis to high-priority warnings will just undermine the results of the first

experiment described in this article. Essentially, because we have not observed high levels

of static correspondence relying on FindBugs default configuration, we can infer that such

levels would be even lower if we had used a restricted set of warnings.

Software Qual J

123

6.2 Correlation studies including bug finding tools

Similar to our study on correlation (Sect. 3), Nagappan and Ball have described an

experiment to measure correlation between warnings reported by static analysis tools and

defects (Nagappan and Ball 2005). By also using Spearman’s test, they have found a

positive correlation between the density of warnings issued by the PREfix/PREfast tools

and the density of pre-release defects detected in the Windows Server 2003. However,

there are three main differences between their work and the study reported in the current

article: (a) they do not consider field defects, but pre-release defects (i.e., defects found by

developers before the release of a system, using, for example, tests or manual inspections);

(b) they have analyzed a single system (Windows Server 2003), while in our study we have

assessed thirty systems; (c) they relied on PREfix/PREfast tools for finding potential

defects in systems implemented in C (a non-type safe language), while we have centered

our study on Java-based systems. In spite of such differences, we consider that our work

complements Nagappan and Ball’s experiment by showing that warnings are correlated not

only to pre-release defects (as suggested by their experiment), but also to post-release

defects (as suggested by our second experiment).

Butler et al. concluded for the existence of correlation between warnings raised by

FindBugs and violations in the name patterns of identifiers, using a sample of eight systems

(although this correlation has ceased when they restricted the analysis to high-priority

warnings) (Butler et al. 2009). Our claim is that such correlation is due to poor quality

code, as the correlation we have measured in our second experiment. Stated otherwise, our

claim is that there is a broad event—namely poorly designed and implemented code—that

is the common cause behind the following correlations: (a) between name patterns vio-

lations and FindBugs’ warnings (as discussed in Butler’s works); (b) between field defects

and FindBugs’ warnings (as discussed in the second experiment reported in this paper).

6.3 Correlation studies including number of defects

There are also studies that have investigated the relation between the number of defects

and the following properties of OO systems:

• Metrics: Subramanyam and Krishnan have investigated the relation between defects

and classical metrics, such as CBO, WMC, and DIT (Subramanyam and Krishnan

2003). In their study, they have evaluated a single e-commerce system, with modules

implemented in C?? and Java. For the part of the system implemented in C??, they

concluded that WMC, DIT, and CBO*DIT have had a relevant impact on the number

of defects. For the modules implemented in Java, only CBO*DIT has had an impact on

defects. Similarly, Nagappan et al. have conducted a study on five components of the

Windows operating system in order to investigate the relationship between complexity

metrics and field defects (Nagappan et al. 2006). Later, the study has been replicated to

consider a large ERP system (SAP R3) (Holschuh et al. 2009). They have also

measured a significant correlation between complexity metrics and field defects.

• Design Flaws: D’Ambros et al. have demonstrated a relationship between well-known

software design flaws (e.g. Brain Method, Feature Envy, and Shotgun Surgery (Lanza

and Marinescu 2006)) and post-release defects (D’Ambros et al. 2010). In another

work, the authors showed the existence of an important correlation between field

defects and two metrics they have proposed, called churn of source code and entropy of

source code (D’Ambros et al. 2010).

Software Qual J

123

To conclude, the mentioned studies suggest that the correlation investigated in our work

can be extended to consider other variables, mainly metrics designed to evaluate the static

structure and the overall design quality of object-oriented systems.

7 Conclusions

In this article, we have investigated the role that bug finding tools can play in software

quality assurance. Our investigation has been directed to answer two questions: (Q1) Is

there a correspondence between the static location of warnings and the program elements

changed in order to remove field defects? (Q2) Is there a statistical relation between

warnings and field defects? Our answer to Q1 was negative: after matching warnings to

defective program elements in three medium-to-large size systems, we have not observed

evidences toward a static correspondence between post-release defects and warnings

reported by FindBugs. On the other hand, our answer to Q2 was positive: by analyzing

thirty systems from the Apache Foundation, we have detected a moderate correlation

between field defects and warnings reported by FindBugs. Therefore, FindBugs has not

provided static correspondence with actual bug fixes at the method level of granularity.

However, when we lifted the analysis to the level of projects, we have observed that those

projects with a higher density of warnings have also presented a higher density of defects.

At a first view, these answers seem to contradict each other. However, we believe that

this apparent contradiction can be explained as follows. First, our first experiment provides

strong indications that warnings do not directly contribute to locate the software compo-

nents responsible for field defects. However, warnings seem to be good indicators for the

internal quality of a software system, mainly in terms of adherence to recommended

programming practices and correct use of standard libraries (as indicated by previous

studies (Wagner et al. 2008)). In other words, our second experiment suggests that poor

quality code tends to present both more warnings and defects, although there is not a direct

causal connection between these two variables. However, we acknowledge that the

reported experiments should be extended and replicated to provide more robust conclu-

sions on this subject. It is also important to investigate the reasons for the mismatch

observed between the static location of warnings and defects.

In the future, we also intend to investigate other statistical techniques to correlate

warnings to defects, such as Granger’s causality test (Granger 1969).

Acknowledgments This work was supported by FAPEMIG, CAPES, and CNPq.

References

Araujo, J. E., Souza, S., & Valente, M. T. (2011). Study on the relevance of the warnings reported by Java
bug finding tools. IET Software, 5(4), 366–374.

Ayewah, N., Hovemeyer, D., Morgenthaler, J. D., Penix J., & William, P. (2008). Using static analysis to
find bugs. IEEE Software, 25(5).

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S.,
Engler, D. (2010). A few billion lines of code later: Using static analysis to find bugs in the real world.
Communications of the ACM, 53(2), 66–75.

Butler, S., Wermelinger, M., Yu, Y., & Sharp, H. (2009). Relating identifier naming flaws and code quality:
An empirical study. In 16th working conference on reverse engineering (WCRE), pp. 31–35.

Copeland, T. (2005). PMD applied. Alexandria: Centennial Books.
Dallmeier, V., & Zimmermann, T. (2007). Extraction of bug localization benchmarks from history. In 22th

conference on automated software engineering (ASE), pp. 433–436.

Software Qual J

123

D’Ambros, M., Bacchelli, A., & Michele, L. (2010). On the impact of design flaws on software defects. In
10th international conference on quality software (QSIC), pp 23–31.

D’Ambros, M., Lanza, M., & Robbes, R. (2010). An extensive comparison of bug prediction approaches. In
7th working conference on mining software repositories (MSR), pp. 31–41.

Foster, J. S., Hicks, M. W., & Pugh, W. (2007). Improving software quality with static analysis. In 7th
workshop on program analysis for software tools and engineering (PASTE), pp. 83–84.

Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods.
Econometrica, 37(3), 424–438.

Holschuh, T., Pauser, M., Herzig, K., Zimmermann, T. P., & Rahul, Z. (2009). Andreas predicting defects in
sap java code: An experience report. In 31st international conference on software engineering (ICSE),
pp. 172–181.

Hovemeyer, D., & Pugh, W. (2004). Finding bugs is easy. SIGPLAN Notices, 39(12), 92–106.
Johnson, S. C. (1977). Lint: A C program checker. Technical Report 65, Bell Laboratories.
Kim, S., & Ernst, M. D. (2007). Which warnings should I fix first? In 15th international symposium on

foundations of software engineering (FSE), pp. 45–54.
Lanza, M., & Marinescu, R. (2006). Object-oriented metrics in practice. Springer.
Larus, J. R., Ball, T., Das, M., DeLine, R., Fahndrich, M., Pincus, J., Rajamani, S. K., Ramanathan, V.

(2004). Righting software. IEEE Software, 21(3), 92–100.
Louridas, P. (2006). Static code analysis. IEEE Software, 23(4), 58–61.
Nagappan, N., & Ball, T. (2005). Static analysis tools as early indicators of pre-release defect density. In

27th international conference on software engineering (ICSE), pp. 580–586.
Nagappan, N., Ball, T., & Zeller, A. (2006). Mining metrics to predict component failures. In 28th inter-

national conference on software engineering (ICSE), pp. 452–461.
Perry, D. E., Porter, A. A., & Votta, L. G. (1997). A primer on empirical studies (tutorial). In Tutorial

presented at 19th international conference on software engineering (ICSE), pp. 657–658.
Pfleeger, S. L. (1995). Experimental design and analysis in software engineering, part 5: Analyzing the data.

Software Engineering Notes, 20(5), 14–17.
Sprent, P., & Smeeton, N. C. (2007). Applied nonparametric statistical methods. Boca Raton: Chapman & Hall.
Subramanyam, R., & Krishnan, M. S. (2003). Empirical analysis of CK metrics for object-oriented design

complexity: Implications for software defects. IEEE Transaction on Software Engineering, 29(4):
297–310.

Wagner, S., Jürjens, J., Koller, C., & Trischberger, P. (2005). Comparing bug finding tools with reviews and
tests. In 17th international conference on testing of communicating systems (TestCom), volume 3502 of
LNCS, pp. 40–55. Springer.

Wagner, S., Aichner, M., Wimmer, J., & Schwalb, M. (2008). An evaluation of two bug pattern tools for
Java. In 1st international conference on software testing, verification, and validation (ICST),
pp. 248–257.

Zheng, J., Williams, L., Nagappan, N., Hudepohl, J. P., & Vouk M. A. (2006). On the value of static analysis
for fault detection in software. IEEE Transactions on Software Engineering, 32(4).

Author Biographies

Cesar Couto is a PhD student in the Computer Science Department at
the Federal University of Minas Gerais, Brazil. He is also a lecturer in
the Department of Computing at CEFET-MG, Brazil. His research
interests include software maintenance and evolution, software quality,
and programming languages. Couto has an MSc in Computer Science
from the Federal University of Minas Gerais.

Software Qual J

123

Joao Eduardo Montandon is a MSc student in the Computer Science
Department at the Federal University of Minas Gerais, Brazil. His
research interests include software quality, software comprehension,
and software engineering issues for mobile application development.

Christofer Silva is an undergraduate student in Computer Engineering
at the Department of Computing at CEFET-MG, Brazil. His research
interests include software maintenance and evolution, software quality,
and programming languages.

Marco Tulio Valente is an assistant professor in the Computer Sci-
ence Department at the Federal University of Minas Gerais, Brazil. His
research interests include software maintenance and evolution, soft-
ware quality, and software modularization and remodularization. Va-
lente has a PhD in Computer Science from the Federal University of
Minas Gerais. He is a member of the ACM, the IEEE Computer
Society, and the Brazilian Computer Society.

Software Qual J

123

	Static correspondence and correlation between field defects and warnings reported by a bug finding tool
	Abstract
	Introduction
	Static correspondence
	Data collection
	Filtering the maintenance requests
	Calculating the static correspondence

	Results
	Analysis of the results
	Precision and recall

	Correlation
	Spearman’s rank correlation test
	Analysis of the results

	Lessons learned
	Threats to validity
	External validity
	Internal validity
	Construct validity

	Related work
	Studies on the relevance of bug finding tools
	Correlation studies including bug finding tools
	Correlation studies including number of defects

	Conclusions
	Acknowledgments
	References

