
Documenting APIs with Examples: Lessons
Learned with the APIMiner Platform

João Eduardo Montandon, Hudson Borges, Daniel Felix, and Marco Tulio Valente

Department of Computer Science, UFMG, Brazil
{joao.montandon,hsborges,dfelix,mtov}@dcc.ufmg.br

Abstract—Software development increasingly relies on Appli-
cation Programming Interfaces (APIs) to increase productivity.
However, learning how to use new APIs in many cases is a non-
trivial task given their ever-increasing complexity. To help devel-
opers during the API learning process, we describe in this paper
a platform—called APIMiner—that instruments the standard
Java-based API documentation format with concrete examples
of usage. The examples are extracted from a private source
code repository—composed by real systems—and summarized
using a static slicing algorithm. We also describe a particular
instantiation of our platform for the Android API. To evaluate the
proposed solution, we performed a field study, when professional
Android developers used the platform by four months.

Index Terms—API documentation; source code examples;
JavaDoc; field study.

I. INTRODUCTION

Learning how to use most modern APIs is a challenging task
given their ever-increasing size and complexity. As showed by
vast empirical research, a major obstacle faced by developers
when learning APIs is the lack of examples of usage [8], [11],
[12]. In fact, the documentation of widely used APIs, such as
those provided by the Java and Android platforms, basically
consists of textual descriptions, with very few examples.

To help developers to use an API, we describe a platform—
called APIMiner—that instruments the standard Java-based
API documentation format with concrete source code ex-
amples of usage, extracted from a private repository. More
specifically, this paper makes the following contributions:

• We report the design and implementation of APIMiner
(Section II). Particularly, we describe a summarization
algorithm—based on static slicing [17]—that extracts
small but relevant source code examples (Section II-B).

• We describe a particular version of the APIMiner plat-
form for the Android API, with 79,732 source code
examples extracted from 103 open-source applications
(Section III).

• We conducted a large-scale field study using the Android
API version of the platform, when professional Android
developers used the system by four months (Section IV).
During this period, Android APIMiner was accessed
20,038 times from 130 different countries, generating
more than 42,000 page views. Also, APIMiner provided
2,157 source code examples to its users.

• We document the main lessons learned after designing,
implementing, and evaluating APIMiner (Section V).

II. APIMINER

This section describes the architetcure and the example
summarization algorithm used by APIMiner.

A. Architecture

Many tools to recommend API source code examples
are described in the literature (as summarized in Section
VI). However, such tools—at least those compatible with
JavaDoc-based documents—are usually research prototypes
not mature enough to support an open field study. For this
reason, we decided to invest in the implementation of our
own tool for adding examples to JavaDoc-based documents.
As illustrated in Figure 1, the architecture of our solution
relies on three main components:

Source code repository: Developers usually view code
examples as recommendations on how to use an API [11].
For this reason, APIMiner extracts examples from an internal
and curated repository of source code projects, which must
be populated before starting the instrumentation of the target
API. In other words, to increase the quality of the provided
examples, we decided to rely on an internal repository instead
of automatically mining for examples in the web.

Pre-processing modules: To achieve scalability, APIMiner
extracts, summarizes, and ranks the examples off-line, during
a pre-processing phase. In this phase, we search the internal
repository for methods that call the public methods provided
by the target API. More specifically, two important tasks
are performed. First, each method m that calls a given
method mapi from the API is summarized, using a static
slicing algorithm, as discussed in Section II-B. Second, the
examples are ranked based on a weighted average of metrics
that evaluate different perspectives of a software project.
The first metric is the size of the example, in terms of lines
of code (i.e., a source code metric). The premise is that
small examples are better. The second and third metrics are
respectively the number of commits of the file that provided
the example in its original repository (i.e., a process metric)
and the number of downloads of the target system (i.e., an
usage metric). The premise in this case is that developers
prefer examples that come from relevant files (which are
changed many times) and from widely used and well-known
systems. Finally, the examples are stored in a relational

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany
Practice Track

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

401



Figure 1. APIMiner architecture

database. In this way, a straightforward SQL query is used to
retrieve the examples extracted for a given API method.

JavaDoc Weaver: In the proposed architecture, a documen-
tation weaver tool automatically generates a new JavaDoc
documentation, by inserting an “Example Button” in the
original documentation, as illustrated in Figure 2.

Figure 2. JavaDoc instrumented with “Examples Button”

B. Summarization Algorithm

Basically, source code examples must include their con-
text, must have few lines of code, and must highlight the
computation provided by the API [11]. Furthermore, a good
example must be executed with minimal effort. To obtain
examples with the aforementioned conditions, APIMiner relies
on a summarization process that extracts the source code
lines structurally related with a given API method call. For
this purpose, we implemented an intra-method static slicing
algorithm that performs the source code summarization.

Algorithm 1 presents this algorithm. Basically, the algo-
rithm has three main functions: (a) Summarization; (b)
BackwardSlicing; and (c) ForwardSlicing. It also uses
the following auxiliary functions:

• GetRdVars and GetWrVars: return the variables that a
given statement reads or writes to.

• GetPrevStmts and GetNextStmts: return the state-
ments lexically located before or after a given statement.

• GetParentStm: retrieves the statement that is the lexical
parent of a given statement, considering that the state-
ments are represented by an Abstract Syntax Tree (AST).

The Summarization method represents the entry-point of
the summarization algorithm. This method receives as input
two arguments: (a) seed, which is the statement with the
API method call; and (b) method body, representing all
statements in the method where the seed was found. The
method starts by declaring two local lists: summarizedStmts,
which stores statements that have been processed and included
in the example (line 2); and selectedStmts, which stores the
statements that are relevant but that have not been processed
by the algorithm (line 3). The algorithm then iterates over
selectedStmts and executes the slicing process for each
statement (lines 4-23). Finally, the summarizedStmts list is
returned with the relevant statements (line 24).

In the main loop (lines 4-23), the algorithm gets a state-
ment from selectedStmts and verifies whether it has been
processed (lines 5 and 6). If it has not, the slicing algorithm
is executed based on this statement, which is also stored in
stm (lines 7-21). Basically, the algorithm first retrieves the
variables stm reads and the statements located before it (lines
7 and 8). Then, we call the BackwardSlicing function with
rdVars and prevStmts as input, and after that we store the
result in selectedStmts for subsequent iterations (lines 9 and
10). If stm and seed are the same, the algorithm retrieves the
variables that are written by stm and the statements located
after stm. Then, we call the ForwardSlicing function with
wrVars and nextStmts as input, and after that we store
the result in selectedStmts for subsequent iterations (lines
12-15). Next, the algorithm verifies whether stm is nested
in a control dependence block and, if true, retrieves this
block and inserts it in selectedStmts for further processing
(lines 17-20). Finally, the processed statements are stored in
summarizedStmts (line 21).

Both BackwardSlicing and ForwardSlicing functions
work in a similar way. They receive as input a list of variables,
used to determine whether a statement is relevant and a list
of statements to analyze. Then, both functions iterate over the
statements list (lines 29-34 and 40-45), extract the variables of
each statement (lines 30 and 41), and verify whether there is an
intersection between the extracted variables and the variables
received as parameter (lines 31 and 42). In case common
variables are found, the statement is inserted in a list returned
by the functions (lines 32 and 46). Although not presented
for the sake of readability, the algorithm includes a last step

402



Algorithm 1 Summarization algorithm
1: function SUMMARIZATION(seed, body)
2: summarizedStmts ← ∅
3: selectedStmts ← seed
4: while selectedStmts 6= ∅ do
5: stm ← Pop(selectedStmts)
6: if stm /∈ summarizedStmts then
7: rdV ars ← GetRdVars(stm)
8: prevStmts ← GetPrevStmts(stm, body)
9: bStms ← BackwardSlicing(rdV ars, prevStmts)

10: selectedStmts ← selectedStmts ∪ bStms
11: if stm = seed then
12: wrV ars ← GetWrVars(stm)
13: nextStmts ← GetNextStmts(stm, body)
14: fStms ← ForwardSlicing(wrV ars, nextStmts)
15: selectedStmts ← selectedStmts ∪ fStms
16: end if
17: if stm is a child of a control dependence then
18: pStm ← GetParentStm(stm)
19: selectedStmts ← selectedStmts ∪ pStm
20: end if
21: summarizedStmts← summarizedStmts ∪stm
22: end if
23: end while
24: return summarizedStmts
25: end function
26:
27: function BACWARDSLICING(vars, statements)
28: result ← ∅
29: for stmt ∈ statements do
30: stmtV ars ← GetWrVars(stmt)
31: if vars ∩ stmtV ars 6= 0 then
32: result ← result ∪ stmt
33: end if
34: end for
35: return result
36: end function
37:
38: function FORWARDSLICING(vars, statements)
39: result ← ∅
40: for stmt ∈ statements do
41: stmtV ars ← GetReadableVars(stmt)
42: if vars ∩ stmtV ars 6= 0 then
43: result ← result ∪ stmt
44: end if
45: end for
46: return result
47: end function

where statements with an empty block (e.g., for(...){}) are
removed from the returned slice.

Figure 3 shows in bold the result of a slicing regarding
the call to the vibrate method (line 8). We can observe that
the slice also includes the statement responsible for the target
object declaration (lines 6-7)

1 public boolean onLongClick(View view) {
2 if (mIsSelecting) {
3 return false;
4 }
5 Log.i(AnkiDroidApp.TAG, "onLongClick");
6 Vibrator vibratorManager =
7 (Vibrator) getSystemSrv(Context.VIBRATOR);
8 vibratorManager.vibrate(50); // API method call
9 longClickHandler.postDelayed(...);

10 return true;
11 }

Figure 3. Summarization using static slicing (sliced code is in bold)

III. ANDROID APIMINER

Android applications are widely dependent on services
provided by the Android API [14]. On average, 30% to 50%
of the applications’ code relies on the Android API. To ease
the API learning effort, Google provides a detailed JavaDoc
that documents the API. However, due to the lack of examples,
the learning curve is still a problem for novice developers.

Therefore, Android provides an interesting API for evaluat-
ing APIMiner. For this reason, we implemented a particular in-
stance of our solution for Android —called Android APIMiner.
Android APIMiner provides 79,732 examples distributed in
2,494 methods (18% of the whole number of methods in
the API), and 349 classes (19% of the whole number of
classes in the API). The examples were extracted from 103
popular open-source systems, such as Wordpress and ZXing
Barcode Scanner. As a prerequisite, we selected systems that
attend three conditions: (a) they are implemented under open
source licenses (such as GPL, Apache, etc); (b) they have
a public source code repository; and (c) they must compile
without errors (since the slicing algorithm works over the
AST representation of the source code). Part of the systems
was selected from a public Android open source application
list.1 The remaining systems were selected from curated
developer websites (such as http://www.xda-developers.com,
http://stackoverflow.com, etc) and specialized blogs (such as
http://sudarmuthu.com). Table I shows a complete list with
the systems included in our source code repository.

Table II shows the first 10 packages with more examples. As
we can observe, the examples are highly concentrated, since
the top 10 packages have 91% of the extracted examples (the
remaining 9% are distributed in 74 packages). As expected,
the packages in this table provide features commonly used
by Android apps. For instance, android.content implements
features related with content sharing and management and
android.widget, android.view, and android.graphics
are responsible for features related with GUI concerns.

Table III shows the top 10 classes in number of extracted
examples. The listed classes have less examples than the
packages in Table II: the top 10 classes have 54% of
the extracted examples. Such classes also provide widely

1http://en.wikipedia.org/wiki/List_of_open_source_Android_applications

403



Table I
SYSTEMS IN THE SOURCE CODE REPOSITORY

System System System
4Chan Image Browser Dialer2 robotfindskitten
aCal Exchange OWA Scrambled Net Full
ADW Launcher FeedGoal Secrets
Alien Blood Bath FFVideoLive Shortyz
Andless Floating Image Shuffle
Android Launcher Formula S. Tatham’s puzzles
Android Metronome Frozen Bubble Sipdroid
Android motion GCal Call Logger SL4A
Android’s Fortune GCstar Scanner Slashdot
AndroSens GCstar Viewer SMS Backup Plus
Andtweet Hermit Android Sokoban
Ankidroid Hot Death Solitaire Collection
Announcify K9 Mail Spell Dial
APG Keepassdroid Substrate
APNdroid Lexic SuperGenPass
Aptoide Client LibreGeoSocial Swallow Catcher
Aptoide Uploader MandelBrot Swiftp
ARViewer MemorizingTrustMngr Target
Audalyzer MINDroid Test Card
AR framework Mnemododo Tippy Tipper
Banshee Remote Mustard TouchTest
Barcode Scanner Nethack Android Tricorder
BatteryTracker Newton’s Cradle Tumblife
Big Planet Tracks OI About Twisty
Broadcast Dumper Open WordSearch Twitli
Chime Timer OpenMap framework Vector Pinball
CIDR Calculator OpenSudoku Vidiom
Clusterer Orbot Voyager Connect
ConnectBot Password Hash Watch Aids
Contact Owner Pedometer Wiki Dici
CorporateAddressbook Picture Map Word Seek
Countdown Alarm Plughole Wordpress
Crowdroid PMix XBMC Remote
Cyanogen Updater Replica Island
Dazzle Ringdroid

Table II
TOP 10 PACKAGES IN NUMBER OF EXAMPLES

Package # Examples
android.content 15,446
android.view 11,664
android.app 10,671
android.widget 9,493
android.os 7,016
android.util 5,710
android.graphics 4,216
android.database 3,648
android.preference 3,038
android.content.res 1,998
Total 72,900

used services, such as logging (android.util.Log), GUI
(android.view.View and android.widget.TextView),
and basic features (android.app.Activity and
android.content.Intent).

A similar behavior is observed when we analyze the meth-
ods with more examples, as presented in Table IV. From
an universe of 14,258 methods, the top 10 methods are
responsible for 19% of the source code examples. Similarly,
the listed methods implement services commonly used when
developing Android applications, like methods for manipulat-

Table III
TOP 10 CLASSES IN NUMBER OF EXAMPLES

Class # Examples
android.app.Activity 7,883
android.view.View 7,171
android.util.Log 5,599
android.content.Intent 3,840
android.content.Context 3,729
android.database.Cursor 3,612
android.widget.TextView 3,578
android.content.ContextWrapper 2,817
android.content.SharedPreferences 2,569
android.os.Bundle 2,490
Total 43,288

ing GUIs (Activity.findViewById and setText) and for
implementing logging (Log.d, Log.e, Log.i, etc).

Table IV
TOP 10 METHODS IN NUMBER OF EXAMPLES

Method # Examples
Activity.findViewById(int) 2,900
Context.getString(int) 2,024
TextView.setText(CharSequence) 1,908
Log.d(String,String) 1,454
View.setOnClickListener(View.OnClickListener) 1,326
View.setVisibility(int) 1,279
View.findViewById(int) 1,250
Log.i(String,String) 1,172
ContextWrapper.getResources() 1,001
Log.e(String,String) 979
Total 15,293

IV. FIELD STUDY

We conducted a field study using the publicly available
version of the Android APIMiner platform. More specifically,
we intended to answer the following questions:

1) How many users accessed Android APIMiner? How
much time they spent in the platform? How many pages
they visited?

2) Which locations do the visits to Android APIMiner
come from?

3) How many examples Android APIMiner provided?
What were the most requested examples?

4) Do developers search for source code examples?

To answer these questions, we analyzed usage access data
collected from September 14th, 2011 to January 18th, 2012,
in a total of four months. The data was obtained from two
distinct sources: (a) Google Analytics service, which collected
information related with APIMiner website access; and (b) a
private logging service we implemented in the platform.

A. How Many Users Accessed Android APIMiner?

During the time frame considered in our field study, Android
APIMiner received a total of 20,038 visits. As described in
Table V, 14,412 visits (72%) originated from organic search—
i.e., web search engine like Google, Bing, etc. Moreover, 3,393

404



visits (17%) originated from referral traffic, which means that
the visitor was redirected to Android APIMiner from another
web site (i.e., from links in blogs, forums, etc). The remaining
2,233 visits (11%) come from direct access to our platform.

Table V
TRAFFIC SOURCES

Traffic Origin # Visits % Visits
Organic search 14,412 72
Referral traffic 3,393 17
Direct access 2,233 11
Total 20,038 100

Figure 4 presents the number of visits to Android APIMiner
by weeks. In general, we observe that the number of visits
increased consistently. Also, there are two peaks of visits
due to promotion posts on the Reddit social news site.2 For
example, in the second week of December, 2012, we posted a
message about APIMiner in the Reddit’s programming forum
(/r/programming), which has around 415,000 readers.

Figure 4. Number of visits per week

During our field study, Android APIMiner received 42,034
pageviews, resulting on an average of 2.10 pages/visit. The
users remained on the site for an average of 1:28 minutes.

B. Which Locations do the Visits to Android APIMiner Come
From?

Table VI presents the top 10 countries in number of vis-
its along with their Pages/Visit ratio. These countries were
responsible for 12,029 visits, which represent 60% of the
total. As we can observe, Android APIMiner was accessed
from a large number of locations. However, three countries
concentrate the access: United States (3,162 visits), India
(2,086 visits), and Brazil (1,743 visits).

Table VI
TOP 10 COUNTRIES IN VISITS

Country # Visits Pages/Visit
United States 3,162 2.50
India 2,086 1.62
Brazil 1,743 3.28
France 855 2.65
Germany 827 2.26
Japan 777 1.71
United Kingdom 749 2.07
South Korea 719 1.63
Spain 577 1.75
Canada 534 2.26

2http://www.reddit.com

C. How Many Examples Android APIMiner Provided?

During the four months of our study, the users requested
3,910 examples for Android APIMiner. However, 1,753 re-
quests (45%) were made for methods the platform has no
examples. In other words, Android APIMiner has provided
examples for 2,157 users requests (55%).

Figure 5 shows the 2,157 example requests handled by
Android APIMiner distributed by weeks. The distribution is
similar to the one presented in Figure 4. Furthermore, the
peaks in this figure are also due to the posts at Reddit. The
highest number of examples was provided in the second week
of December, 2012 (due to a second post at Reddit). In this
week, 722 examples were provided by Android APIMiner.

Figure 5. Number of examples provided per week

D. Do Developers Search for Source Code Examples?

To answer this question, we analyzed the queries used by
the users when they reached Android APIMiner from a search
engine. As mentioned, 14,412 visits originated from search
engine queries. Due to privacy issues, Google does not provide
search data from logged users (i.e., for search coming from
users logged at Google services, like GMail). For this reason,
we had to discard 9,774 visits. The remaining 4,638 visitors
executed 3,660 different queries.

Table VII presents the top 10 most frequent user search
queries. As we can observe, the top 10 queries were used 191
times (4%). Therefore, unlikely the results for the number of
examples extracted per API method, the user queries present
a diversified behavior.

Table VII
TOP 10 SEARCH QUERIES

Keyword # Queries
speechrecognizer wait timeout 53
apiminer 30
datepicker.keep_screen_on 16
eglquerysurface egl_width android resize 15
listpopupwindow example android 15
android.net.rtp example 14
gridlayoutanimationcontroller example 13
android notificationcompat example 12
notificationcompat.builder example 12
fragmentactivity example 11
Total 191

We also counted the number of queries containing the
example keyword. We found that 1,287 out of 3,660 available
queries have this keyword (35%). When analyzing the top 10

405



queries, the example keyword is present in six queries. In
summary, the example keyword was used frequently by the
users, which reinforces our claim that developers search for
source examples when accessing the documentation of an API.

V. LESSONS LEARNED

We report here seven lessons we learned after designing,
implementing, and evaluating APIMiner in the field.

Lesson Learned #1: APIMiner’s architecture was essential
to meet four fundamental requirements in this kind of tool:
(a) support for production-quality code snippets (because
the examples come from real systems, which were compiled
before insertion in our source code repository); (b) seamless
JavaDoc integration (because our weaver tool preserves the
original interface and only inserts an “Example Button” in
the original JavaDoc documentation); (c) scalability due to a
pre-processing phase that extracts, summarizes, and stores the
examples in a relational database; (d) support to on-the-fly
updates to the examples database—for example, to include
examples from new systems.

Lesson Learned #2: As illustrated by Figure 6, our results
show that the usage of the Android API by client applications
follows a power-law like distribution, which certainly makes
it more difficult to provide a complete coverage of the API
methods. In fact, similar degrees of coverage are observed
in other forms of documentation. For example, crowd-based
systems, such as Stack Overflow, also do not provide a
complete coverage of the classes in the Android API [10].

Figure 6. Number of examples for each API method (including only the
2,494 with at least a single example)

Lesson Learned #3: Even for a mature API as the Android
API, it is not simple to retrieve a representative base of client
systems. However, the aforementioned power-law like behav-
ior implies that a small base of clients can provide examples
to the most common API methods. Moreover, APIMiner’s
architecture makes it possible to increment this base without
the need to regenerate the previously instrumented JavaDoc
documents. Therefore, it is possible to continuously evolve
and improve the database of examples.

Lesson Learned #4: Regarding their size, 75% of the extracted
examples have less than ten lines of code, and 10% have
between eleven and fifteen lines of code. Therefore, the
slicing algorithm was effective in providing small examples.

Lesson Learned #5: Our usage data—including the number
of examples provided by APIMiner and the number of search
engine queries including the word example—reinforce the
importance that developers give to examples when accessing
API documents. On the other hand, it is time-consuming
to provide examples for an extense API like Android, with
almost 14K methods. For this reason, we claim that examples
should be extracted automatically.

Lesson Learned #6: There is no correlation between the
number of examples extracted for API methods and the
number of examples requested by API users. Particularly,
in Android APIMiner, the Spearman’s rank correlation
coefficient between extracted and requested examples is -0.04
(in a scale that ranges from -1 to +1). Therefore, when
evaluating the examples coverage, it is important to consider
not only the number of entries for a given method in the
database of examples, but especially the number of examples
the API users requested for this method.

Lesson Learned #7: Tools like APIMiner are useful not only
to API users but also to API developers. More specifically,
APIMiner helps API developers to understand how client code
developers are using their APIs, by revealing the methods with
more client calls or with more example requests. With this
information in hand, API developers can improve the tradi-
tional documentation, in specific cases, with human-crafted
examples. In other cases, this information may even motivate
a redesign of the API (for example, to deprecate a method that
is almost never used or to simplify the interface of methods
with many example requests).

VI. RELATED WORK

Many approaches have been proposed to provide source
code examples automatically. Such approaches—referred in
this section as API recommendation systems—can be or-
ganized in two distinct groups: IDE-based recommendation
systems and JavaDoc-based recommendation systems.

IDE-based recommendation systems—such as Strath-
cona [4], MAPO [18], and API Explorer [3]—are implemented
as IDEs’ extensions (i.e., plug-ins). In general terms, the main
advantage of these systems is their ability to explore the
syntactic context provided by the IDE to recommend examples
more relevant to developers (as in Strathcona). On the other
hand, the examples provided by these systems typically cannot
be used for documentation purposes, since they are highly
dependent of a particular development context. Despite being
an IDE-based recommendation system, MAPO relies on a
sequential pattern mining algorithm to provide source code
examples for multiple API methods thar are frequently used
together in a pre-defined order. As our ongoing work, we are

406



Table VIII
COMPARISON BETWEEN APIMINER AND OTHER API RECOMMENDATION SYSTEMS

Category System Input Interface Output Repository Clustering Ranking

IDE
Tools

Strathcona Statement Plugin Method Private — �
API Explorer Statement Plugin — Private — —

MAPO Statement Plugin Method Private � �

JavaDoc
Tools

ExoaDocs Method Web Slicing Web � �
APIExample Type Web/Plugin Text Web � �
PropER-Doc Type Desktop Method Web � �
APIMiner Method Web Slicing Private — �

also extending APIMiner to include examples for multiple
methods (as described in Section VII-C).

On the other hand, JavaDoc-based recommendation
systems—such as APIExample [16], eXoaDocs [5], [6], and
PropER Doc [7]—are implemented independently from any
IDE and usually can be accessed from the web. As the key
advantages, these systems have a wider reachability (because
they are independent from other platforms) and greater scala-
bility (because their results can be pre-processed). On the other
hand, they usually do not provide the same level of precision
as IDE-based recommendation systems.

Table VIII compares existing API recommendation tools
with APIMiner. In fact, eXoaDocs is the tool closer to
APIMiner. However, the process behind eXoaDocs’ exam-
ples extraction—as well as the process used by the tool to
instrument JavaDocs—is different from the one followed by
APIMiner. For instance, eXoaDocs extracts examples from
the web and summarizes them using only data dependencies.
Moreover, the instrumented JavaDocs must be regenerated
whenever a new example is processed. On the other hand,
APIMiner relies on a curated source code repository and
on a slicing algorithm that considers both data and control
dependencies. Furthermore, APIMiner requires the insertion
of a single button in a standard API documentation. Finally,
we evaluated our platform in the field, using a complex and
widely popular API.

VII. FINAL REMARKS

We conclude by presenting our contributions, limitations,
ongoing work, and plans for future research.

A. Contributions

Our experience with APIMiner brings contributions both
to API developers and researchers. For API developers, our
experience is important because we documented the typical
architecture and algorithms used in such systems. Moreover,
we described the main challenges and benefits of making our
tool publicly available for a popular API, like the Android
API. For API researchers, APIMiner constitutes a real platform
that provides a baseline for evaluating in the field new tech-
niques for recommending API usage examples, particularly
new summarization and ranking algorithms. Basically, in this
case, we just need to replace (or extend) the current database
of examples.

Android APIMiner is publicly available at:

http://aserg.labsoft.dcc.ufmg.br/apiminer

B. Limitations

APIMiner currently targets APIs documented in the
JavaDoc format. Particularly, our slicing algorithm is tightly
coupled to the Java language syntax and to the Eclipse AST.
Moreover, our approach suffers from the “cold-start” problem,
i.e., examples can only be extracted after the API is used by
a reasonable sample of client systems.

C. Ongoing Work

Association rules: We have already implemented a new version
of the APIMiner platform that provides examples for methods
that are frequently called together. Basically, when an user
requests an example for a method m, we also suggest the
methods that are frequently called with m (in the same client
code). The user can then select just examples including such
methods. Figures 7 and 8 illustrate this new feature of the plat-
form. Figure 7 shows an example for the beginTransaction

method, but also indicates that this method is frequently called
with other methods, like setTransactionSuccessful() and
endTransaction(). Figure 7 shows an example for these
three methods called together in the same client code.

We relied on an association rule algorithm to discover such
patterns of simultaneous method calls [1]. The association
rules were extracted from a set of 155 Android projects,
available at GitHub. By mining this codebase, we extracted
1,952 patterns of frequent method calls (like the pattern
presented in Figure 8). We also extracted 21,598 examples
for such patterns. We are currently conducting a second
field study with this new version of the platform, and for
that reason we decided to center this paper in our first version.

IDE version: Many developers prefer to access JavaDoc
documents directly from the IDE, without having to access
a Web browser. For this reason, we are also working on a
static version of API Miner for Eclipse and Android Studio.
Basically, we changed our weaver tool to insert directly
in the JavaDoc web pages examples of usage. Since these
pages are rendered by the IDE, developers cannot navigate by
the examples. Instead, the pages include a fixed number of
examples, previously instrumented by the weaver tool.

D. Future Work

As future work, we intend to work in four fronts:

407



Figure 7. Example for beginTransaction()

Figure 8. Example for beginTransaction() plus setTransactionSuccessful() and endTransaction()

• We intend to better evaluate the quality and the usefulness
of the examples provided by APIMiner, possibly by
means of controlled studies with developers.

• We intend to correlate and compare our results with
studies that consider examples provided by crowd-based
systems, like Stack Overflow [9], [10], [13].

• We plan to use APIMiner to provide examples to another
API, possibly a subset of the Java API or the Eclipse API,
using as the source code repository a compiled version
of the Qualitas Corpus [15].

• We plan to investigate new summarization algorithms,
like the approach proposed by Buse et al. [2].

ACKNOWLEDGMENTS

Our research is supported by FAPEMIG, CAPES, and CNPq.

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In 20th International Conference
on Very Large Data Bases (VLDB), pages 487–499, 1994.

[2] Raymond P. L. Buse and Westley Weimer. Synthesizing API usage
examples. In 34th International Conference on Software Engineering
(ICSE), pages 782–792, 2012.

[3] Ekwa Duala-Ekoko and Martin P. Robillard. Using structure-based
recommendations to facilitate discoverability in APIs. In 25th European
Conference on Object-Oriented Programming (ECOOP), pages 79–104,
2011.

[4] Reid Holmes, Robert Walker, and Gail Murphy. Approximate structural
context matching: An approach to recommend relevant examples. IEEE
Transactions on Software Engineering, 32(12):952–970, 2006.

[5] Jinhan Kim, Sanghoon Lee, Seung won Hwang, and Sunghun Kim.
Adding examples into Java documents. In 24th International Conference
on Automated Software Engineering (ASE), pages 540–544, 2009.

[6] Jinhan Kim, Sanghoon Lee, Seung won Hwang, and Sunghun Kim.
Towards an intelligent code search engine. In 24th Conference on
Artificial Intelligence (AAAI), 2010.

[7] Lee Wei Mar, Ye-Chi Wu, and Hewijin C. Jiau. Recommending proper
API code examples for documentation purpose. In 18th Asia Pacific
Software Engineering Conference (APSEC), pages 331–338, 2011.

[8] Samuel McLellan, Alvin Roesler, Joseph Tempest, and Clay Spinuzzi.
Building more usable APIs. IEEE Software, 15(3):78–86, 1998.

[9] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns.
What makes a good code example?: A study of programming Q&A
in StackOverflow. In 28th IEEE International Conference on Software
Maintenance (ICSM), pages 25–34, 2012.

[10] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne
Storey. Crowd documentation: exploring the coverage and the dynamics
of API discussions on Stack Overflow. Technical report, Georgia Tech,
College of Computing, 2012.

[11] Martin P. Robillard. What makes APIs hard to learn? Answers from
developers. IEEE Software, 26(6):27–34, 2009.

[12] Martin P. Robillard and Robert DeLine. A field study of API learning
obstacles. Empirical Software Engineering, 16:703–732, 2011.

[13] Dennis Schenk and Mircea Lungu. Geo-locating the knowledge transfer
in StackOverflow. In International Workshop on Social Software
Engineering (SSE), pages 21–24, 2013.

[14] Mark D. Syer, Bram Adams, Ying Zou, and Ahmed E. Hassan. Ex-
ploring the development of micro-apps: A case study on the BlackBerry
and Android platforms. IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM), pages 55–64, 2011.

[15] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and
Roberto S. Bigonha. Qualitas.class Corpus: A compiled version of the
Qualitas Corpus. Software Engineering Notes, 38(5):1–4, 2013.

[16] Lijie Wang, Lu Fang, Leye Wang, Ge Li, Bing Xie, and Fuqing
Yang. APIExample: An effective web search based usage example
recommendation system for Java APIs. In 26th International Conference
on Automated Software Engineering (ASE), pages 592–595, 2011.

[17] Mark Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10:352–257, 1984.

[18] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Mining
and recommending API usage patterns. In 23rd European Conference
on Object-Oriented Programming (ECOOP), pages 318–343, 2009.

408


