
Identifying Experts in Software Libraries and

Frameworks among GitHub Users

João Eduardo Montandon

Technical College (COLTEC)

Federal University of Minas Gerais

Belo Horizonte, Brazil

joao.montandon@dcc.ufmg.br

Luciana Lourdes Silva

Department of Computer Science

Federal Institute of Minas Gerais

Ouro Branco, Brazil

luciana.lourdes.silva@ifmg.edu.br

Marco Tulio Valente

Department of Computer Science

Federal University of Minas Gerais

Belo Horizonte, Brazil

mtov@dcc.ufmg.br

Abstract—Software development increasingly depends on li-
braries and frameworks to increase productivity and reduce
time-to-market. Despite this fact, we still lack techniques to assess
developers expertise in widely popular libraries and frameworks.
In this paper, we evaluate the performance of unsupervised
(based on clustering) and supervised machine learning classifiers
(Random Forest and SVM) to identify experts in three popular
JavaScript libraries: facebook/react, mongodb/node-mongodb,
and socketio/socket.io. First, we collect 13 features about devel-
opers activity on GitHub projects, including commits on source
code files that depend on these libraries. We also build a ground
truth including the expertise of 575 developers on the studied
libraries, as self-reported by them in a survey. Based on our
findings, we document the challenges of using machine learning
classifiers to predict expertise in software libraries, using features
extracted from GitHub. Then, we propose a method to identify
library experts based on clustering feature data from GitHub; by
triangulating the results of this method with information available
on Linkedin profiles, we show that it is able to recommend dozens
of GitHub users with evidences of being experts in the studied
JavaScript libraries. We also provide a public dataset with the
expertise of 575 developers on the studied libraries.

I. INTRODUCTION

Modern software development heavily depends on libraries

and frameworks to increase productivity and reduce time-to-

market [1], [2]. In this context, identifying experts in popular

libraries and frameworks—for example, among the members

of global open-source software development platforms, like

GitHub—has a practical value. For example, open source

project managers can use this information to search for po-

tential new contributors to their systems. Private companies

can also benefit from this information before hiring developers

to their projects. In fact, we manually inspected 1,839 job

offers, available on July 2nd, 2018 at Stack Overflow Jobs.1

We found that 789 jobs (42%) have at least one tag referring

to frameworks and libraries, including REACTJS (372 jobs),

ANGULARJS (215 jobs), and RUBY ON RAILS (135 jobs).

This result suggests that companies, when hiring, often target

developers with expertise in specific programming technolo-

gies. Furthermore, this information can help to recommend

experts to answer questions in Q&A forums [3] or to assist

project managers to set up balanced development teams [4].

1https://stackoverflow.com/jobs

Previous work on software expertise focused on identifying

experts for internal parts of a software project, but not on

external components, such as libraries and frameworks. For ex-

ample, Expertise Browser [5] visually maps parts of a software

product (e.g., code or documentation) to the respective experts,

using number of changes (commits) as the basic measure of

expertise. Fritz et al. [6]–[8] propose the degree-of-knowledge

(DOK) metric to identify experts in specific source-code files,

which combines both commits and interactions with the code,

by means of an IDE. Schuler and Zimmerman [9] advocate that

expertise can also be gained by using the component of interest

(e.g., by calling its methods). Silva-Junior et al. [10] propose a

fine-grained approach to identify expertise in specific source-

code elements—methods, classes, or packages. However, these

works aim to identify experts that can fix a bug, review or

evolve internal parts of an specific software product.

In this paper, we extend existing expertise identification

approaches to the context of third-party software compo-

nents. Our key hypothesis is that when maintaining a piece

of code, developers also gain expertise on the frameworks

and libraries used by its implementation. We focus on three

popular libraries: FACEBOOK/REACT (for building enriched

Web interfaces), MONGODB/NODE-MONGODB (for accessing

MongoDB databases), and SOCKETIO/SOCKET.IO (for real-

time communication). Then, we evaluate the use of unsuper-

vised (based on clustering) and supervised machine learning

classifiers to identify experts in these libraries. Both techniques

are applied using features about candidate experts in each

library, extracted for selected GitHub users. These features

include, for example, number of commits on files that import

each library and number of client projects a candidate expert

has contributed to. We also survey a sample of GitHub

users to create a ground truth of developers expertise in the

studied libraries. In this survey, the participants declared their

expertise (in a scale from 1 to 5) in the libraries. This ground

truth provides the expertise of 575 GitHub developers in the

studied libraries, including 418 FACEBOOK/REACT developers,

68 MONGODB/NODE-MONGODB developers, and 89 SOCK-

ETIO/SOCKET.IO developers. To validate our hypothesis, we

first train and evaluate two machine learning classifiers, based

on Random Forest [11] and SVM [12]. Finally, we investigate

the use of clustering algorithms to identify library experts.






Research Questions: We ask two research questions:

(RQ.1) How accurate are machine learning classifiers in

identifying library experts? For three expertise classes—

novices, intermediate, and experts—the maximal F-measure

is 0.56 (MONGODB/NODE-MONGODB). We argue that this

poor performance is inherent of using GitHub as a full proxy

for expertise. For example, there are experts that rarely

contribute to public GitHub projects; their expertise comes

from working on private projects or projects that are not

GitHub-based. low feature values (e.g., commits in library

clients), making it challenging to predict the expertise of such

developers, by considering their activity on GitHub.

(RQ.2) Which features best distinguish experts in the studied

libraries? In this second RQ, we first rely on clustering to

identify experts that share similar feature values. In FACE-

BOOK/REACT, we found a cluster where 74% of the developers

are experts in the framework; in MONGODB/NODE-MONGODB

and SOCKETIO/SOCKET.IO we found clusters with 65% and

75% of experts, respectively. More importantly, we show that

the experts in such clusters tend to be active and frequent con-

tributors to library clients on GitHub. Therefore, this finding

suggests that GitHub data can be a partial proxy for expertise

in libraries and frameworks. By partial proxy, we mean that

developers with high feature values (commits, code churn, etc)

tend to be experts in the studied libraries; by contrast, the

proxy fails in the case of developers with low feature values,

who can be both experts and novices, as concluded in RQ.1.

Contributions: Our contributions are threefold: (1) based on

the findings and lessons learned with RQ.1, we document

the challenges of using machine learning classifiers to predict

expertise in software libraries, using features extracted from

GitHub; (2) inspired by the findings of RQ.2, we propose an

unsupervised method to identify library experts based on clus-

tering feature data from GitHub; by triangulating the results of

this method with expertise information available on Linkedin,

we show that it is able to recommend dozens of GitHub users

with robust evidences of being experts in FACEBOOK/REACT,

a popular JavaScript library; (3) we provide a public ground

truth with the expertise of 575 developers on three relevant

JavaScript libraries; to our knowledge, this is the largest

dataset with expertise data on specific software technologies.

Structure: Section II documents the process we followed to

collect the data used to answer RQ.1 and RQ.2. Section

III describes the techniques used in this work, as well as

their setup. Section IV provides answers to the proposed

RQs. Section V summarizes our findings, lessons learned, and

limitations. It also proposes a practical method for identifying

library experts and validates its results with Linkedin data.

Section VI reports threats to validity and Section VII describes

related work. Finally, Section VIII concludes the paper.

II. DATA COLLECTION

A. Definitions

Before presenting the data collection process, we define key

terms used in this process and also in the rest of this paper:

Table I
TARGET LIBRARIES

Target Library Stars Contrib Commits Files

FACEBOOK/REACT 91,739 1,171 9,731 797
MONGODB/NODE-MONGODB 6,696 260 4,565 617
SOCKETIO/SOCKET.IO 40,199 149 1,698 83

• Target Library: The JavaScript libraries used in this

paper; our goal is to identify experts in these libraries

based on their activity on GitHub.

• Client Project (or File): A project (or source code file)

that depends on a target library.

• Candidate Expert: A contributor of a client project whose

expertise on a target library is assessed in this paper.

• Feature: An attribute of a candidate expert that may act

as a predictor of its expertise on a target library.

• Ground Truth: A dataset with the expertise of candidate

experts in a target library, as self-reported by them.

B. Target Libraries

We evaluate JavaScript libraries due to the importance

and popularity of this language in modern software devel-

opment. We focus on the developers of three JavaScript

libraries2: FACEBOOK/REACT
3 (a system for building enriched

Web interfaces), MONGODB/NODE-MONGODB
4 (the official

Node.js driver for MongoDB database server), and SOCKE-

TIO/SOCKET.IO
5 (a library for real-time communication). We

selected FACEBOOK/REACT because it is a very popular front-

end development library; after making this first selection, we

searched for libraries handling important concerns in back-

end development and selected MONGODB/NODE-MONGODB,

a persistence library; and SOCKETIO/SOCKET.IO, since com-

munication is important both in front-end and back-end pro-

gramming. Table I shows information about these systems,

including number of stars, contributors, commits, and files (on

April, 2018). As we can see, they are popular projects (at least

6,696 stars) and actively maintained (at least 149 contributors

and 1,698 commits). For brevity, we call them REACT, NODE-

MONGODB, and SOCKET.IO in the rest of this paper.

C. Candidate Experts

For each target library L, where L is REACT, NODE-

MONGODB, or SOCKET.IO, we selected a list of candidate

experts, as described next. First, we relied on the top-10K

most popular JavaScript projects on GitHub, according to their

number of stars. We checked out these projects and searched

for dependencies to L in package.json and bower.json files,

which are configuration files used by two popular JavaScript

package managers. A candidate expert in L is a developer

who performed at least one change in a source code file

(from a client project) that depends on L. In other words, we

2In our study, the terms libraries and frameworks are used interchangeably.
3https://github.com/facebook/react
4https://github.com/mongodb/node-mongodb-native
5https://github.com/socketio/socket.io



Table III
FEATURES COLLECTED FOR EACH CANDIDATE EXPERT IN EACH TARGET LIBRARY

Dimension Feature Description

Volume

commits Number of commits in client projects
commitsClientFiles Number of commits changing at least one client file
commitsImportLibrary Number of commits adding library import statements
codeChurn Code churn considering all commits in client projects
codeChurnClientFiles Code churn considering only changes in client files
imports Number of added library import statements

Frequency

daysSinceFirstImport Number of days since the first commit where a library import statement was added
daysSinceLastImport Number of days since the last commit where a library import statement was added
daysBetweenImports Number of days between the first/last commits where a library import statement was added
avgDaysCommitsClientFiles Average interval (in days) of the commits changing client files
avgDaysCommitsImportLibrary Average interval (in days) of the commits adding library import statements

Breadth
projects Number of client projects the developer contributed at least once
projectsImport Number of client projects where the developer added a library import statement

assume that if a developer changed a file that imports L he

has chances to be an expert in this library. Next, we removed

aliases from this initial list of candidate experts, i.e., the same

developer, but with distinct e-mails on the considered commits.

For this purpose, we used a feature of GitHub API that maps

a commit author to its GitHub account. Using this feature,

we mapped each developer in the list of candidate experts

to his/her GitHub’s account. Candidate experts e and e′ are

the same when they share the same GitHub account. Table II

shows for each target library the number of client projects, and

the final number of candidate experts after handling aliases. As

we can observe, REACT has the highest number of both client

projects (1,136) and candidate experts (8,742). Therefore, our

dataset includes a popular target library, with thousands of

client projects and candidate experts; but it also includes less

popular libraries, with just a few hundred candidate experts.

Table II
CLIENT PROJECTS AND CANDIDATE EXPERTS

Library Clients Experts

FACEBOOK/REACT 1,136 8,742
MONGODB/NODE-MONGODB 223 454
SOCKETIO/SOCKET.IO 345 608

D. Features

We collected 13 features for each candidate expert selected

in the previous step. As documented in Table III, these features

cover three dimensions of changes performed on client files.6

• Volume of changes, which includes six features about the

quantity of changes performed by candidate experts in

client projects, such as number of commits and code

churn (e.g., lines added or deleted). We conjecture that

6These dimensions and their features were derived and extended from
the literature on developers expertise in open source communities. Volume
of changes (particularly, number of commits) is commonly used in related
works [5]–[8]. Frequency and breadth of changes have also been considered
as proxies to developers expertise [10], [13]–[17]. As an additional criterion,
we only use features that can be directly computed from GitHub public API.

by heavily maintaining a file developers gain expertise on

libraries used by its implementation.

• Frequency of changes, including five features expressing

the frequency and time of the changes performed by

candidate experts, e.g., number of days since first and

last library import. The rationale is that expertise also

depends on temporal properties of the changes.

• Breadth of changes, which includes two features about the

number of client projects the candidate experts worked

on. The rationale is that expertise might increase when

candidate experts work in different client projects.

The features are collected from client projects where the

candidate experts contributed with at least one commit. In

more detailed terms, suppose a candidate expert c; suppose

also that Proj c are the projects where c has made at least one

commit (this set is provided by GitHub API). We iterate over

Proj c to create a subset CliProj c containing only projects that

depend on the target libraries. The features collected for c are

extracted from CliProj c. After collecting this data, we found

that 69% of REACT’s candidate experts worked on a single

client project; for NODE-MONGODB and SOCKET.IO, this per-

centage increases to 88% and 87%, respectively. By contrast,

we found candidate experts working on 26 projects (REACT),

5 projects (NODE-MONGODB) and 12 projects (SOCKET.IO).

E. Ground Truth

To create a ground truth with developers expertise on each

target library, we conducted a survey with the candidate

experts identified in Section II-C. For REACT, which has

8,742 candidate experts, we sent the survey to a random

sample of 2,185 developers (25%). For NODE-MONGODB

and SOCKET.IO, which have less candidates, we sent the

survey to all candidate experts identified in Section II-C,

i.e., to 454 and 608 developers, respectively. For each

target library, we e-mailed the candidate experts, describing

our research purpose and asking the following single question:

Could you please rank your expertise on [target library] in a

scale from 1 (novice) to 5 (expert)?



1 2 3 4 5

Scores

A
n

s
w

e
rs

0
5

0
1

0
0

1
5

0
2

0
0

(a) FACEBOOK/REACT

1 2 3 4 5

Scores

A
n

s
w

e
rs

0
5

1
0

1
5

2
0

2
5

(b) MONGODB/MONGO

1 2 3 4 5

Scores

A
n

s
w

e
rs

0
5

1
5

2
5

3
5

(c) SOCKETIO/SOCKET.IO

Figure 1. Survey answers

Table IV
SURVEY NUMBERS

Library Mails Answers Ratio

FACEBOOK/REACT 2,185 418 19%
MONGODB/NODE-MONGODB 454 68 15%
SOCKETIO/SOCKET.IO 608 89 15%

Table IV summarizes the number of e-mails sent, the

number of received answers, and the response ratio. The

number of answers range from 68 (NODE-MONGODB) to 418

(REACT) and the response ratio ranges from 15% (SOCKET.IO

and NODE-MONGODB) to 19% (REACT).

Figure 1 shows the distribution of the survey answers. For

REACT, 254 candidates (61%) ranked themselves as experts

in the library (scores 4–5); 110 candidates (26%) declared

an intermediate expertise (score 3), and 54 candidates (13%)

considered themselves as having a limited expertise (scores

1–2). For NODE-MONGODB, the results are 40% (experts),

34% (intermediate expertise), and 26% (limited expertise). For

SOCKET.IO, the results are 24%, 36%, and 40%, respectively.

Ground Truth Limitations: The proposed ground truth is based

on the developers’ perceptions about their expertise in the

target libraries. Therefore, it is subjected to imprecisions and

noise, since it is not realistic to assume the survey participants

ranked themselves according to uniform and objective criteria.

For example, some developers might have been more rigorous

in judging their expertise, while others may have omitted their

lack of experience on the studied libraries (see the Dunning-

Kruger Effect [18]). In order to try to reduce these issues,

we made it clear to the participants that our interests were

strictly academic and that we will never use their answers to

commercial purposes. Finally, it is also worth mentioning that

previous research has shown that self estimation is a reliable

way to measure general programming experience, at least in

a student population [19].

F. Final Processing Steps

We performed the following processing steps on the features

collected for the developers that answered our survey.

Missing Values: Missing values occur when it is not pos-

sible to compute a feature value. In our dataset, there

are four features with missing values: daysSinceFirstImport,

daysSinceLastImport, daysBetweenImports, and avgDaysCom-

mitsImportLibrary. For these features, a missing value appears

in candidate experts who have added an insufficient number

of import statements to a client project (e.g., imports = 0).

The percentage of candidate experts with missing values for

these four features is relevant, as they appear in 45% of the

surveyed developers. To handle such cases, we replaced miss-

ing values at daysSinceFirstImport and daysSinceLastImport

by a zero value, because candidate experts without import

statements should not be viewed as long time library users.

By contrast, missing values at avgDaysCommitsImportLibrary

were replaced by the maximal observed value, because the re-

spective candidate experts should have the highest values when

compared to those who effectively added import statements.

Finally, daysBetweenImports needs at least two imports to be

calculated correctly. Therefore, we assigned a zero value when

imports = 1, and −1 when imports = 0.7

Removing Correlated Features: Correlated features may con-

tribute to inaccurate classifications due to their high associa-

tion degree [20], [21]. To tackle this issue, we first used the

cor8 function from R’s stats package to compute a matrix

with Pearson coefficients for each pair of features. Then, we

used the findCorrelation9 function from R’s caret package to

identify pairs of features with a correlation greater than 0.7,

as previously adopted in the literature [22]; in such cases, we

measured the overall correlation of both features and discarded

the highest one. Figure 2 shows a heatmap that summarizes

this process. Red cells are features discarded due to a high

correlation with another feature; gray cells denote features

preserved by the correlation analysis, i.e., they are used in

the classification process. As we can see, two features are

correlated with at least one other feature, regardless the target

library: commitsImportLibrary and projectsImport. As a result

of this analysis, six, four, and five features were discarded at

REACT, NODE-MONGODB, and SOCKET.IO, respectively.

7In fact, we tested different strategies for missing values, such as discarding
all fields with missing values, applying different values, etc. However, the
results never exceeded the ones based on the values proposed in this paragraph.

8https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/cor
9https://www.rdocumentation.org/packages/caret/versions/6.0-

79/topics/findCorrelation



co
de
Ch
ur
n

co
de
Ch
ur
nC
lie
nt
Fi
le
s

co
m
m
its

co
m
m
its
Cl
ie
nt
Fi
le
s

co
m
m
its
Im
po
rtL
ib
ra
ry

im
po
rts

da
ys
Be
tw
ee
nI
m
po
rts

da
ys
Si
nc
eL
as
tIm
po
rt

da
ys
Si
nc
eF
irs
tIm
po
rt

av
gD
ay
sC
om
m
its
Cl
ie
nt
Fi
le
s

av
gD
ay
sC
om
m
its
Im
po
rtL
ib
ra
ry

pr
oj
ec
ts

pr
oj
ec
ts
Im
po
rt

react

mongodb

socketio

Figure 2. Correlation analysis; red cells are discarded due to high correlation.

Skewed Feature Values: Features with skewed distributions

may impact the performance of machine learning classi-

fiers [23], [24]. We assume that skewed feature distributions

are the ones where the mean—computed for the candidate

experts included in the ground truth of a given target library—

is at least four times greater than the median. By following this

definition, four, six, and four features have a skewed behavior

in REACT, NODE-MONGODB, and SOCKET.IO, respectively.

On the values of such features, we applied a log transfor-

mation, as in another machine learning study [25].

III. METHODS

In this section, we discuss the setup of the machine learning

and clustering models, used on RQ.1 and RQ.2, respectively.

A. Machine Learning Setup and Algorithms

Number of Classes: Machine learning algorithms require a

minimal number of samples on each class (or scores, in our

terminology) [26]. However, this condition is not followed by

our data. For example, for REACT we collected expertise data

about 418 developers, but only 24 developers (6%) ranked

themselves with score 2. To attenuate this problem, we train

and evaluate our models under two scenarios: (1) considering

all five classes; (2) by transforming the data into the following

ternary classification: novice (scores 1–2), intermediate (score

3), and experts (scores 4–5). Furthermore, we only evaluate the

scenario with five classes for REACT. The reason is because

NODE-MONGODB and SOCKET.IO have fewer data points; for

example, both libraries have classes with less than 10 samples.

Informed Over Sampling (SMOTE): Besides having few sam-

ples for some classes, the ground truth is largely imbalanced,

as illustrated in Figure 1. For example, 87% of the REACT

developers ranked themselves as having some knowledge on

the framework (scores 3-5). It is well-known that machine

learning classifiers tend to produce poor results when applied

to imbalanced datasets [27]. To tackle this problem, we used

a technique called Informed Over Sampling (SMOTE) [28],

which balances a dataset by producing and inserting synthetic

but similar observations to minority classes (but only in the

training part of the dataset). SMOTE was previously used

in machine learning approaches to several software engineer-

ing problems, including defect prediction [29], mobile apps

analysis [30], self-admitted technical debt detection [31], and

identification of security issues from commit messages and

bug reports [32]. In our problem, we used SMOTE over the

minority class, on both scenarios. SMOTE has two parameters:

number of the nearest neighbours (KNN) and the percentage

of synthetic instances to create. After some initial tests, we

set up these parameters to 3 and 30%, respectively. This setup

results in a minority class increased by 30%; and the new data

points are synthesized by considering 3-nearest neighbours of

the existing ones (KNN parameter).

Machine Learning Classifiers: We evaluate two well-known

machine learning classifiers: Random Forest [11] and

SVM [12]. We compare the results of these classifiers with

a ZeroR baseline, which simply predicts the majority class,

ignoring all feature values. We do not compare with previous

expertise identification approaches (e.g., [5]–[9]) because

they are not proposed to measure expertise on libraries and

frameworks, but on internal elements of a software project.

We use k-fold stratified cross-validation to evaluate the results

of these classifiers. Stratified cross-validation is a variant of

k-fold cross-validation where folds contain approximately the

same proportion of each class. We set k to 5, to avoid testing

models in small folds, particularly in small classes, as occur

in NODE-MONGODB and SOCKET.IO. Another important step

is the tuning of the classifiers parameters. We rely on a grid

search strategy for hyper-parameters with cross validation to

find the best parameters settings for each classifier [33].

Evaluation Metrics: We evaluate the classifiers using preci-

sion, recall, F-measure, and AUC (Area Under the Receiver

Operating Characteristic Curve). To compute AUC, we use an

implementation recommended for multi-class classifications.

This implementation is provided as an R package by Microsoft

Azure’s data science team.10 Further, to compute F-measure,

we first compute the average precision and recall, considering

all classes. The reported F-measure is the harmonic mean of

the average precision and average recall. We also report Co-

hen’s kappa, which is also a measure of classifier performance,

particularly useful on imbalanced datasets [34].

B. Clustering Setup and Algorithm

We use clustering to investigate more closely the relation of

feature values and library expertise (RQ.2). To this purpose,

we use k-means, which is a widely popular clustering algo-

rithm. In software engineering, k-means was used to support

many tasks, including detecting mobile apps with anomalous

behavior [35], test case prioritization [36], and to characterize

build failures [37]. A key challenge when using k-means is

to define the appropriate number k of clusters. There are

methods proposed to help on this task, such as the elbow [38]

and silhouette methods [39]. However, they also depend on

interpretation and subjective decisions [38]. For this reason, we

follow an alternative procedure, as described next. We execute

k-means multiple times, starting with k = 2 and incrementing

it after each execution. For each k, we analyze the resulting

clusters, searching for clusters dominated by experts. For

10https://github.com/Azure/Azure-MachineLearning-DataScience



Table VII
RESULTS FOR 3 CLASSES: NOVICE (SCORES 1-2), INTERMEDIATE (SCORE 3), AND EXPERT (SCORES 4-5)

FACEBOOK/REACT MONGODB/NODE-MONGODB SOCKETIO/SOCKET.IO

RForest SVM Baseline RForest SVM Baseline RForest SVM Baseline

Kappa 0.09 0.03 0.00 0.35 0.25 0.00 0.16 0.25 0.00
AUC 0.56 0.51 0.50 0.70 0.56 0.50 0.60 0.71 0.50
Precision (Novice) 0.14 0.60 0.00 0.50 0.47 0.00 0.52 0.54 0.40
Precision (Intermediate) 0.34 0.00 0.00 0.62 0.17 0.00 0.29 0.59 0.00
Precision (Expert) 0.65 0.61 0.61 0.55 0.57 0.40 0.43 0.48 0.00
Recall (Novice) 0.09 0.06 0.00 0.50 0.68 0.00 0.61 0.78 1.00
Recall (Intermediate) 0.18 0.00 0.00 0.57 0.09 0.00 0.19 0.19 0.00
Recall (Expert) 0.83 1.00 1.00 0.63 0.75 1.00 0.56 0.56 0.00
F-measure 0.36 0.29 0.25 0.56 0.44 0.19 0.42 0.46 0.19

REACT, we search for clusters with at least 70% of experts

(since REACT has a higher percentage of experts in the ground

truth, close to 61%); for NODE-MONGODB and SOCKET.IO—

which have less experts, 40% and 24%, respectively—we

search for clusters with at least 60% of experts. We stop after

finding at least one cluster attending the proposed thresholds.

Table V shows data on each execution; for each k, it shows the

percentage of experts of the cluster with the highest percentage

of experts. For REACT, we select 3 clusters, since it leads to

a cluster with 74% of experts. For NODE-MONGODB, we also

select 3 clusters, including a cluster with 65% of experts. For

SOCKET.IO, there are 5 clusters and one has 75% of experts.

Table V
CLUSTER WITH THE HIGHEST PERCENTAGE OF EXPERTS (VALUES IN BOLD

DEFINE THE SELECTED NUMBER OF CLUSTERS)

Library
k

2 3 4 5

REACT 66 74 - -
NODE-MONGODB 57 65 - -
SOCKET.IO 39 44 44 75

IV. RESULTS

(RQ.1) How accurate are machine learning classifiers when

used to identify library experts?

Table VI presents the results of the machine learning

classifiers for five classes. The results are provided only for

REACT, since NODE-MONGODB and SOCKET.IO do not have

sufficient samples to perform a classification using five classes,

as explained in Section III-A. For almost all performance

metrics and classifiers, the results are not good. For example,

kappa is 0.09 and AUC is 0.56 for Random Forest. Precision

ranges from 0.00 (Novice 2, SVM) to 0.50 (Expert 4, Random

Forest). F-measure is 0.24 (Random Forest) and 0.15 (SVM),

against 0.13 with the ZeroR baseline.

Table VII presents the results for three classes (scores 1-2,

score 3, scores 4-5). First, we discuss the results of Random

Forest. For this classifier, kappa varies from 0.09 (REACT)

to 0.35 (NODE-MONGODB); AUC ranges from 0.56 (REACT)

to 0.70 (NODE-MONGODB). Precision results are greater for

experts than for novices, both for REACT (0.65 vs 0.14) and

Table VI
MACHINE LEARNING RESULTS FOR 5 CLASSES (FACEBOOK/REACT)

RForest SVM Baseline

Kappa 0.09 0.05 0.00
AUC 0.52 0.53 0.50
Precision (Novice 1) 0.25 0.00 0.00
Precision (Novice 2) 0.07 0.00 0.00
Precision (Intermediate) 0.35 0.23 0.00
Precision (Expert 4) 0.50 0.48 0.46
Precision (Expert 5) 0.29 0.00 0.00
Recall (Novice 1) 0.07 0.00 0.00
Recall (Novice 2) 0.04 0.00 0.00
Recall (Intermediate) 0.27 0.10 0.00
Recall (Expert 4) 0.77 0.98 1.00
Recall (Expert 5) 0.10 0.00 0.00
F-measure 0.24 0.15 0.13

NODE-MONGODB (0.61 vs 0.60), while SOCKET.IO has the

highest precision for novices (0.52). Recall ranges from 0.09

(REACT, novices) to 0.83 (REACT, experts). F-measure is 0.36

(REACT), 0.56 (NODE-MONGODB), and 0.42 (SOCKET.IO). By

contrast, the baseline results for F-measure are 0.25 (REACT)

and 0.19 (NODE-MONGODB and SOCKET.IO). In the same

scenario, SVM results are in 13 out of 27 combinations of

metrics and libraries lower than the ones of Random Forest;

they are also just slightly greater than ZeroR.

For five classes, machine learning classifiers have a

maximal F-measure of 0.24 (REACT). For three classes,

F-measure reaches 0.56 (NODE-MONGODB) and precision

on identifying experts reaches 0.65 (REACT, experts).

(RQ.2) Which features best distinguish library experts?

First, Table VIII shows the percentage of novices (scores

1-2), intermediate (score 3), and experts (scores 4-5) in the

clusters of each library. The table also shows the number

of developers in each cluster. As defined in Section III-B,

for REACT and NODE-MONGODB, we have 3 clusters; for

SOCKET.IO, we have 5 clusters. In Table VIII, the clusters

are sorted by percentage of experts. Therefore, Cluster 1 is

the experts’ cluster in each library. In REACT, 74% of the

developers in this cluster ranked themselves as experts and

only 3% as novices. For NODE-MONGODB and SOCKET.IO,



Table VIII
CLUSTERING RESULTS (CLUSTER 1 HAS THE HIGHEST % OF EXPERTS)

Cluster % Novices % Intermediate % Experts # Devs

FACEBOOK/REACT

C1 0.03 0.23 0.74 97
C2 0.12 0.28 0.60 129
C3 0.18 0.27 0.55 192

MONGODB/NODE-MONGODB

C1 0.12 0.24 0.65 17
C2 0.21 0.43 0.36 14
C3 0.35 0.35 0.30 37

SOCKETIO/SOCKET.IO

C1 0.00 0.25 0.75 4
C2 0.29 0.36 0.36 28
C3 0.33 0.33 0.33 15
C4 0.50 0.40 0.10 30
C5 0.67 0.33 0.00 12

Cluster 1 includes 65% and 75% of experts, respectively. By

contrast, it has only 12% and 0% of novices, respectively. The

number of developers in the experts’ cluster ranges from 4

(SOCKET.IO) to 97 developers (REACT). However, the ground

truth has also more REACT experts (254 vs 21 developers,

respectively). Interestingly, in SOCKET.IO, Cluster 5 should be

viewed as a novice’s clusters; 67% of its members are novices

and the cluster does not include any expert.

In the three studied libraries, there are clusters dominated

by experts. These clusters have 74% (REACT), 65%

(NODE-MONGODB), and 75% (SOCKET.IO) of experts.

We also compare the distributions of feature values, for the

developers in each cluster. For each feature F , we compare

F ’s distribution in Cluster 1 (experts) with the cluster whose

median of F ’s distribution is closest to the one of Cluster 1. In

other words, this cluster tends to be the most similar to Cluster

1, among the remaining clusters; our goal is to assess the

magnitude (effect size) and direction of this similarity. First,

we use a Mann-Whitney test to confirm that the distributions of

F ’s values in both clusters are statistically distinct, assuming

a p-value of 0.05. Furthermore, and more interestingly, we

measure the magnitude and direction of the difference, using

Cliff’s delta. As in other works [40]–[43], we interpret Cliff’s

delta as negligible for d < 0.147, small for 0.147 ≤ d < 0.33,

medium for 0.33 ≤ d < 0.474, and large for d ≥ 0.474.

Table IX shows the results. For REACT, there is a large

difference for the distributions of all features in Cluster 1,

with the exception of daysSinceFirstImport, which has a

medium effect size. The direction is mostly positive (+), i.e.,

developers in Cluster 1 have higher feature values than the

ones in the second most similar cluster (in summary, they

are more active on client files). The exception regards the

distributions of avgDaysCommitsClientFiles, i.e., experts tend

to commit more frequently to REACT client files—in lower

time intervals—than developers of the second cluster. In gen-

Table IX
COMPARING FEATURE DISTRIBUTIONS USING CLIFF’S DELTA: EXPERTS

VS CLUSTER WITH THE CLOSEST MEDIAN (◦ MEANS SIMILAR

DISTRIBUTIONS, ACCORDING TO MANN-WHITNEY, p-VALUE= 0.05)

Feature Effect size Relationship

FACEBOOK/REACT

codeChurnClientFiles large +

commitsClientFiles large +

imports large +

daysSinceLastImport large +

daysSinceFirstImport medium +

avgDaysCommitsClientFiles large −

projects large +

MONGODB/NODE-MONGODB

codeChurn large +

commits large +

commitsClientFiles large +

imports large +

daysBetweenImports large +

daysSinceLastImport medium +

avgDaysCommitsClientFiles large −

avgDaysCommitsImportLibrary large −

projects large +

SOCKETIO/SOCKET.IO

codeChurn ◦ ◦

codeChurnClientFiles ◦ ◦

commits ◦ ◦

commitsClientFiles ◦ ◦

daysSinceLastImport ◦ ◦

avgDaysCommitsClientFiles ◦ ◦

avgDaysCommitsImportLibrary ◦ ◦

projects large +

eral, the results for NODE-MONGODB follow the same patterns

observed for REACT; the main exception is that a medium

difference is observed for daysSinceLastImport. However, in

the case of SOCKETIO/SOCKET.IO there is a major change in

the statistical tests. First, Cliff’s delta reports a large difference

for a single feature: number of projects the developers have

committed to (projects). According to Mann-Whitney tests,

the remaining feature distributions are statistically indistinct.

To visually illustrate these results, Figure 3 shows violin plots

with the distribution on each cluster of commitsClientFiles,

for the three studied libraries. We can see a large difference

between the distributions of Cluster 1 and Cluster 2, both for

REACT and NODE-MONGODB. By contrast, for SOCKET.IO,

there is no clear difference between the distributions of Cluster

1 and Cluster 3 (cluster with the median closest to Cluster 1).

Finally, Figure 4 shows boxplots with projects distribution for

SOCKET.IO. In this case, we can see a clear difference between

Cluster 1 (1st quartile is 8 projects; median is 8.5 projects) and

Cluster 3 (1st quartile is one project; median is two projects).

For REACT and NODE-MONGODB, developers in the

experts cluster are more active on GitHub than developers

in other clusters, regarding most features. However, for

SOCKET.IO, experts are only distinguished by the number

of projects they worked on.



84

6

1

10

1000

C1 C2 C3

Cluster

c
o
m

m
it
s
C

lie
n
tF

ile
s

(a) FACEBOOK/REACT

24

4

1
1

10

100

C1 C2 C3

Cluster

c
o
m

m
it
s
C

lie
n
tF

ile
s

(b) MONGODB/NODE-MONGODB

36

7

40

2

11

100

C1 C2 C3 C4 C5

Cluster

c
o
m

m
it
s
C

lie
n
tF

ile
s

(c) SOCKETIO/SOCKET.IO

Figure 3. Distributions of commitsClientFiles values for each cluster/library. Cluster 1 (experts) has higher values than other clusters, except for SOCKET.IO.

8

1

2

1 1

0.1

1.0

10.0

C1 C2 C3 C4 C5

Cluster

p
ro

je
c
ts

Figure 4. Distributions of projects values for SOCKET.IO clusters. Cluster 1
(experts) has higher values than other clusters.

To conclude, it is important to mention that the feature

values are different for experts in each library. For example,

experts in FACEBOOK/REACT (Cluster 1) perform 84 commits

at client files, against 24 commits for NODE-MONGODB’s

experts (median values, see Figure 3). Our hypothesis is that

REACT is a more complex framework than NODE-MONGODB,

besides targeting a different domain. As a result, it is no trivial

to define feature thresholds to classify experts; furthermore,

these thresholds should not be reused across libraries.

V. DISCUSSION AND PRACTICAL USAGE

A. Relevance and Key Findings

In the survey to create the ground truth, we only asked

for a score (in a 5-point scale). Despite that, we received

some comments about the relevance of approaches to predict

developers expertise in specific programming technologies, as

in the following answers:

What you are doing sounds very interesting and worthwhile

to the developer’s community at large. (P021)

Technical recruiting seems to be an extremely valid use-case

for accurately assess the skills of devs based on their GitHub

contributions, which could lead to a profitable product. (P183)

We associate the high number of responses received in the

survey (575 answers) to the relevance and potential practical

value of the problem we proposed to investigate, which was

rapidly viewed in this way by the surveyed GitHub users.

As mentioned in one of the previous answers, the main

interest of companies is on accurately identifying experts in

a given programming technology. In this particular context,

precision is more important than recall, since companies do

not need to identify all skilled engineers in a given technology,

but only a few of them. When approaching the problem using

machine learning classifiers, we achieved a maximal precision

of 65% for the experts class (scores 4-5, Random Forest,

REACT). In the same scenario, the baseline precision is 0.61.

Therefore, this result casts doubts on the practical value of

using machine learning in this problem. By contrast, when

using unsupervised techniques, based on clustering (k-means),

we were able to identify clusters with 74% (REACT), 65%

(NODE-MONGODB), and 75% (SOCKET.IO) of experts. If we

consider that predicting expertise on programming technolo-

gies is a relevant but challenging problem, we claim that

precision values close to 70%—across multiple libraries—can

sustain the practical adoption of automatic classifiers based on

features extracted from GitHub activity. Even so, unsupervised

techniques should be carefully used, as their gains may vary

according to the library (see REACT clusters). It is also worth

mentioning that such classifiers do not replace but complement

traditional mechanisms for assessing developers expertise, like

interviews and curriculum analysis.

B. Practical Usage

Suppose a library L with developers grouped in clusters

C1, . . . , Cn, after following the methodology proposed in this

paper. Suppose that C1 groups the experts in L. Given these

clusters, suppose we want to assess the expertise of a new

developer d on L, e.g., we are part of a company that heavily

depends on L and we want to assess the expertise of d in

this library, before hiring her. In this case, we should retrieve

the feature vector Fd for d, based on her activities on GitHub.

Then, we compute the Euclidean distance between Fd and the

centroid of each cluster Ci, for i = 1, . . . , n. If the smallest

distance is found between Fd and C1’s centroid, we can

assume that d is more similar to the experts in L and therefore

she has high chances of also being an expert in this library.

Otherwise, our method fails to predict d’s expertise in L, i.e.,

she can be or not an expert. It is also straightforward to identify

expertise in multiple libraries. In this case, we only need to

compute the intersection of experts in each library.



Figure 6. Percentage of REACT experts by quintiles of feature distributions. For most features, there is an important proportion of experts in lower quintiles.

C. Triangulation with Linkedin Profiles

To provide preliminary evidence on the value of the pro-

cedure described in the previous section to identify experts,

we triangulated its results with expertise information available

on Linkedin, starting with REACT experts. First, we mapped

each REACT developer who did not answer our survey—and

therefore was not considered at all in RQ.1 and RQ.2—to one

of the clusters produced for REACT, as discussed before. 263

(out of 2,129 developers, 12%) were mapped to the experts

cluster. After that, the first author of this paper manually

searched for the Linkedin page of these developers, looking for

their names and possibly e-mails on Linkedin (when available,

he also compared the profile photos, at Linkedin and GitHub).

He was able to find the Linkedin profile of 160 developers

(61%). Finally, he manually examined these profiles, searching

for evidences of expertise on REACT. 115 developers (72%)

explicitly refer to REACT on their Linkedin short bios, on

the description of the projects they worked on, or in the list

of programming technologies they have skills on. The first

paper’s author also assessed the experience of these developers

as Web developers, by calculating the number of years on jobs

directly related to Web programming. Figure 5 shows a violin

plot with the results. As we can see, 50% of the developers

predicted as experts have more than four years of experience

on Web-related jobs.

We reproduced this analysis with NODE-MONGODB and

SOCKET.IO. For NODE-MONGODB, 44 out of 58 developers

predicted as experts by the proposed method have pages on

Linkedin; for SOCKET.IO, this happens with 5 out of 10

experts. Furthermore, 28 of such experts (64%) explicitly men-

tion MONGODB on their Linkedin pages; and one developer

(20%) refer to SOCKET.IO. Therefore, both proportions are

lower than the one we reported for REACT. We claim this

happens because NODE-MONGODB and SOCKET.IO are simple

and less complex libraries, when compared with REACT. For

this reason, developers usually do not cite them on Linkedin.

For example, one of the experts in SOCKET.IO declare on his

GitHub profile that he is one of the library’s core developers;

but this information is not available on his Linkedin profile.

Due to this reason, we also do not evaluate the years of experi-

ence of Linkedin users on SOCKET.IO and NODE-MONGODB.

Altogether, this triangulation with Linkedin shows that the

proposed clustering-based method was able in most cases to

find several GitHub developers with evidences of having expe-

rience on the studied libraries. However, before concluding, it

4.38

0 10 20

Experience (Years)

Figure 5. Years of experience on REACT of developers predicted as experts

is also important to acknowledge that expertise and experience

are distinct concepts; indeed, experience is normally viewed

as a necessary condition to achieve expertise [44], [45].

D. Limitations

Certainly, developers can gain expertise on libraries and

frameworks by working on private projects or in projects that

are not on GitHub, as highlighted by these developers:

None of my projects are publicly on GitHub. (P037, score 4)

My work on GitHub isn’t my strongest. My much larger

projects are at work and aren’t open source. (P503, score 4)

Thus, the lack of public activity on GitHub is a major

obstacle for achieving high recall using approaches like the

one proposed in this paper. However, as mentioned before,

precision tends to be more important in practical settings

than recall. If we focus on precision, the proposed clustering

approach is effective on identifying experts among GitHub

users that frequently contribute to client projects.

To illustrate this discussion, Figure 6 shows histograms

with the percentage of REACT experts in each quintile of

the feature distributions (0%-19%, 20%-39%, etc). We can

observe an important concentration of experts in the first

and second quintiles, for features like codeChurnClientFiles

(26%), commitsClientFiles (37%), and projects (57%). In other

words, the histograms confirm the comments of the survey

participants, showing that it is common to have experts with

sparse activity on GitHub. Indeed, this behavior explains the

poor performance of machine learning supervised classifiers

in our context, as observed in RQ.1. By construction, these

classifiers predict the expertise of all developers in the ground

truth. Therefore, the presence of experts at both ends of the

distributions showed in Figure 6 is a major challenge to their

performance. Typically, these classifiers are not able to provide

an unknown answer, as we discussed in Section V-B.



VI. THREATS TO VALIDITY

Target Libraries: We mined experts in three popular JavaScript

libraries. Thus, it is not possible to fully generalize our findings

to experts of other libraries and frameworks.

Candidate Experts: Our list of candidate experts was extracted

from an initial list with the top-10K most starred GitHub

projects (see Section II-C). We acknowledge that our results

might be impacted if we expand or reduce this initial list.

Alias Handling: The method used for detecting aliases in

the initial list of candidate experts (see Section II-C) do not

distinguish developers that have multiple GitHub accounts, i.e.,

they are considered distinct developers. Therefore, further

analysis is required to quantify the incidence of such accounts.

Ground Truth: Another threat is related to mislabeled classes,

due to personal opinions of the surveyed developers, as dis-

cussed in Section II-E. However, we surveyed 575 developers

and some level of mislabeling would not interfere in our

results, since the selected algorithms are robust to label noises.

Furthermore, to tackle the imbalanced behavior of our ground

truth, we used a technique called SMOTE, commonly used

on several software engineering problems [29]–[32]. But we

acknowledge that there are other techniques , such as over-

sampling and cost-sensitive methods [46], [47].

VII. RELATED WORK

CVExplorer [48] is a tool to extract and visualize develop-

ers’ skills data from GitHub, including skills on programming

languages, libraries, and frameworks. The extracted data is

presented in the form of a “tag cloud” interface, where the tags

denote programming technologies (e.g., web development),

libraries and frameworks (e.g., React) or programming lan-

guages (e.g., JavaScript). Tags are mined from the project’s

READMEs and from commit messages. CPDScorer [49] is

another tool that scores developers’ skills, but by correlating

developers’ activity on Stack Overflow and GitHub. The tool

assumes that developers with high quality Stack Overflow

answers (measured by number of upvotes) are more likely

to be experts in specific programming technologies; the same

is assumed for developers who contributed to high quality

projects, as measured using source code metrics. Constantinou

and Kapitsaki [50] also propose a repository-mining approach

for assessing developer’s skills in specific programming lan-

guages. Essentially, the aforementioned works differ from the

approach described in this paper regarding their methods and

goals. CVExplorer considers only commit messages, while we

consider the specific files and import statements modified in

a commit. CPDScorer works at the level of projects, i.e., the

skills acquired by developers on individual commits are not

considered. Finally, the approach proposed by Constantinou

and Kapitsaki identifies experts in programming languages;

by contrast, we target expertise in frameworks and libraries.

Hauff and Gousios [51] rely on natural language processing

to match job advertisements to GitHub users. First, they extract

concept vectors from the text of job advertisement and from

README’s files on GitHub. Then, cosine similarity is used to

compare and match these vectors. SCSMiner [52] also relies

on a vector space model and cosine similarity to calculate the

semantic similarity between a project’s README and a given

query, which can be the name of a programming language

or framework or even a more generic skill, such as “game

development”.

There are also works that rely on machine learning to predict

other characteristics and events on software developers life.

Wang et. al [53] and Mao et al. [54] investigate the problem

of recommending skilled developers to work on programming

tasks posted on the TopCoder crowdsourcing platform. Bao

et. al. [22] investigate the use of machine learning to predict

developers turn over in two private software companies.

Lastly, we also identified previous works that approached

developers expertise in a more conceptual level. Siegmund et.

al. [19], [55] asked students a set of questions about their

programming experience and then, by means of a controlled

experiment, contrasted their answers with the performance of

the respondents in program comprehension tasks. They report

a strong correlation between the number of tasks successfully

concluded and the self-estimates. Baltes and Diehl [45] pro-

pose a conceptual framework—obtained from a set of mixed-

methods—that maps the main traits around software devel-

opers expertise. Their framework reinforces that developers

expertise depends on deliberate practice to be enhanced.

VIII. CONCLUSION

Companies often hire based on expertise in libraries and

frameworks, as we found in the tags of Stack Overflow jobs.

In this paper, we investigated the usage of clustering and

machine learning algorithms to identify library experts, using

public GitHub data. First, we found that standard machine

learning classifiers (e.g., Random Forest and SVM) do not

have a good performance in this problem, at least when they

are trained with all developers from a sample of GitHub users.

The main reason is that not all experts have a strong presence

on GitHub. By contrast, we can use clustering techniques to

identify experts with high activity on GitHub projects that

depend on particular libraries and frameworks. Particularly, we

found clusters with 74% (REACT), 65% (NODE-MONGODB),

and 75% (SOCKET.IO) of experts. Supported by these results,

we proposed a method to identify library experts based on

their similarity (in terms of feature data) to a cluster previously

labeled as including a high proportion of experts.

As future work, we recommend to (1) investigate other tar-

get libraries and frameworks; (2) investigate the use of features

from other platforms, such as Stack Overflow and TopCoder;

and (3) investigate the accuracy of the proposed method with

other developers, including developers of less popular projects.

As a final note, our data—in a fully anonymized format—

and scripts are publicly available at: https://doi.org/10.5281/

zenodo.1484498.

ACKNOWLEDGMENTS

We thank the 575 GitHub users who kindly answered our

survey. This research is supported by CNPq and FAPEMIG.



REFERENCES

[1] I. J. M. Ruiz, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E.
Hassan, “A large-scale empirical study on software reuse in mobile
apps,” IEEE Software, vol. 31, no. 2, pp. 78–86, 2014.

[2] A. A. Sawant and A. Bacchelli, “fine-GRAPE: fine-grained API usage
extractor - an approach and dataset to investigate API usage,” Empirical

Software Engineering, vol. 22, no. 3, pp. 1348–1371, 2017.
[3] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask

and answer questions on the web? (NIER track),” in International

Conference on Software Engineering (ICSE), 2011, pp. 804–807.
[4] K. Siau, X. Tan, and H. Sheng, “Important characteristics of software

development team members: an empirical investigation using repertory
grid,” Information Systems Journal, vol. 20, no. 6, pp. 563–580, 2010.

[5] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative ap-
proach to identifying expertise,” in International Conference on Software

Engineering (ICSE), 2002, pp. 503–512.
[6] T. Fritz, G. C. Murphy, and E. Hill, “Does a programmer’s activity

indicate knowledge of code?” in Foundations of Software Engineering

(FSE), 2007, pp. 341–350.
[7] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of-

knowledge model to capture source code familiarity,” in International

Conference on Software Engineering (ICSE), 2010, pp. 385–394.
[8] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill, “Degree-of-

knowledge: modeling a developer’s knowledge of code,” ACM Trans-

actions on Software Engineering and Methodology, vol. 23, no. 2, pp.
14:1–14:42, 2014.

[9] D. Schuler and T. Zimmermann, “Mining usage expertise from version
archives,” in International Working Conference on Mining Software

Repositories (MSR), 2008, pp. 121–124.
[10] J. R. Da Silva, E. Clua, L. Murta, and A. Sarma, “Niche vs. breadth:

Calculating expertise over time through a fine-grained analysis,” in Inter-

national Conference on Software Analysis, Evolution, and Reengineering

(SANER), 2015, pp. 409–418.
[11] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.

5–32, 2001.
[12] J. Weston and C. Watkins, “Multi-Class Support Vector Machines,”

University of London, Tech. Rep., 1998.
[13] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb, “Social

Coding in GitHub: Transparency and Collaboration in an Open Software
Repository,” in ACM Conference on Computer-Supported Cooperative

Work and Social Computing (CSCW), 2012, pp. 1277–1286.
[14] G. Avelino, L. Passos, F. Petrillo, and M. T. Valente, “Who can maintain

this code? assessing the effectiveness of repository-mining techniques
for identifying software maintainers,” IEEE Software, vol. 1, no. 1, pp.
1–15, 2019.

[15] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “A novel approach for
estimating truck factors,” in 24th International Conference on Program

Comprehension (ICPC), 2016, pp. 1–10.
[16] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey, and

K. Schneider, “Mutual Assessment in the Social Programmer Ecosys-
tem: An Empirical Investigation of Developer Profile Aggregators,” in
ACM Conference on Computer-Supported Cooperative Work and Social

Computing (CSCW), 2013, pp. 103–116.
[17] J. Marlow and L. Dabbish, “Activity Traces and Signals in Software

Developer Recruitment and Hiring,” in ACM Conference on Computer-

Supported Cooperative Work and Social Computing (CSCW), 2013, pp.
145–156.

[18] J. Kruger and D. Dunning, “Unskilled and unaware of it: how diffi-
culties in recognizing one’s own incompetence lead to inflated self-
assessments.” Journal of personality and social psychology, vol. 77,
no. 6, p. 1121, 1999.

[19] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann, “Understanding Understanding Source
Code with Functional Magnetic Resonance Imaging,” in International

Conference on Software Engineering (ICSE), 2014, pp. 378–389.
[20] L. Yu and H. Liu, “Feature Selection for High-dimensional Data: A

Fast Correlation-based Filter Solution,” in International Conference on

Machine Learning (ICML), 2003, pp. 856–863.
[21] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Finding the Right Data

for Software Cost Modeling,” IEEE Software, vol. 22, no. 6, pp. 38–46,
2005.

[22] L. Bao, Z. Xing, X. Xia, D. Lo, and S. Li, “Who Will Leave the
Company? A Large-Scale Industry Study of Developer Turnover by

Mining Monthly Work Report,” in International Conference on Mining

Software Repositories (MSR), 2017, pp. 170–181.
[23] N. Zumel, J. Mount, and J. Porzak, Practical Data Science with R,

1st ed. Manning, 2014.
[24] M. Kuhn and K. Johnson, Applied Predictive Modeling, 1st ed.

Springer, 2013.
[25] S. Chulani, B. W. Boehm, and B. Steece, “Bayesian Analysis of

Empirical Software Engineering Cost Models,” IEEE Transactions on

Software Engineering, vol. 25, no. 4, pp. 573–583, 1999.
[26] S. J. Raudys and A. K. Jain, “Small Sample Size Effects in Statistical

Pattern Recognition: Recommendations for Practitioners,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 13, no. 3,
pp. 252–264, 1991.

[27] N. Japkowicz and S. Stephen, “The Class Imbalance Problem: A
Systematic Study,” Intelligent Data Analysis, vol. 6, no. 5, pp. 429–
449, 2002.

[28] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique,” Journal of

Artificial Intelligence Research, vol. 16, no. 1, pp. 321–357, 2002.
[29] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online Defect Prediction for

Imbalanced Data,” in International Conference on Software Engineering

(ICSE), 2015, pp. 99–108.
[30] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Reflection-aware Static

Analysis of Android Apps,” in IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2016, pp. 756–761.
[31] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. D. Penta, “Rec-

ommending when Design Technical Debt Should be Self-Admitted,” in
IEEE International Conference on Software Maintenance and Evolution

(ICSME), 2017, pp. 216–226.
[32] Y. Zhou and A. Sharma, “Automated Identification of Security Issues

from Commit Messages and Bug Reports,” in Foundations of Software

Engineering (ESEC/FSE), 2017, pp. 914–919.
[33] M. Claesen and B. D. Moor, “Hyperparameter Search in Machine

Learning,” Metaheuristics International Conference (MIC), pp. 1–5,
2015.

[34] J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement
for Categorical Data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.

[35] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in International Conference on Software

Engineering (ICSE), 2014, pp. 1025–1035.
[36] M. J. Arafeen and H. Do, “Test case prioritization using requirements-

based clustering,” in International Conference on Software Testing,

Verification and Validation (ICST), 2013, pp. 312–321.
[37] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaid-

man, M. Di Penta, and S. Panichella, “A tale of CI build failures: An
open source and a financial organization perspective,” in International

Conference on Software Maintenance and Evolution (ICSME), 2017, pp.
183–193.

[38] A. Ng, “Machine Learning Course (Stanford CS229 Lecture notes),”
2000.

[39] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied

Mathematics, vol. 20, no. C, pp. 53–65, 1987.
[40] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical

approach. Lawrence Erlbaum, 2005.
[41] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate

statistics for ordinal level data: Should we really be using t-test and
Cohen’sd for evaluating group differences on the NSSE and other
surveys,” in Annual Meeting of the Florida Association of Institutional

Research, 2006, pp. 1–33.
[42] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. D. Penta,

R. Oliveto, and D. Poshyvanyk, “API change and fault proneness: a
threat to the success of Android apps,” in Foundations of Software

Engineering (FSE), 2013, pp. 477–487.
[43] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the charac-

teristics of high-rated apps? a case study on free android applications,”
in International Conference on Software Maintenance and Evolution

(ICSME), 2015, pp. 301–310.
[44] K. A. Ericsson, The Cambridge Handbook of Expertise and Expert

Performance, 2006, ch. 38, pp. 683–704.
[45] S. Baltes and S. Diehl, “Towards a Theory of Software Development

Expertise,” in Foundations of Software Engineering (FSE), 2018, pp.
1–14.



[46] H. He and E. A. Garcia, “Learning from Imbalanced Data,” IEEE

Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[47] D. Chicco, “Ten Quick Tips for Machine Learning in Computational
Biology,” BioData Mining, vol. 10, no. 1, pp. 1–35, 2017.

[48] G. J. Greene and B. Fischer, “CVExplorer: Identifying Candidate
Developers by Mining and Exploring Their Open Source Contributions,”
in IEEE/ACM International Conference on Automated Software Engi-

neering (ASE), 2016, pp. 804–809.
[49] W. Huang, W. Mo, B. Shen, Y. Yang, and N. Li, “CPDScorer: Mod-

eling and Evaluating Developer Programming Ability across Software
Communities,” in Software Engineering and Knowledge Engineering

Conference (SEKE), 2016, pp. 01–06.
[50] E. Constantinou and G. M. Kapitsaki, “Identifying Developers’ Expertise

in Social Coding Platforms,” in Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), 2016, pp. 63–67.
[51] C. Hauff and G. Gousios, “Matching GitHub Developer Profiles to Job

Advertisements,” Working Conference on Mining Software Repositories

(MSR), pp. 362–366, 2015.
[52] Y. Wan, L. Chen, G. Xu, Z. Zhao, J. Tang, and J. Wu, “SCSMiner:

Mining Social Coding Sites for Software Developer Recommendation
with Relevance Propagation,” World Wide Web, pp. 1–21, 2018.

[53] Z. Wang, H. Sun, Y. Fu, and L. Ye, “Recommending Crowdsourced Soft-
ware Developers in Consideration of Skill Improvement,” in IEEE/ACM

International Conference on Automated Software Engineering (ASE),
2017, pp. 717–722.

[54] K. Mao, Y. Yang, Q. Wang, Y. Jia, and M. Harman, “Developer Rec-
ommendation for Crowdsourced Software Development Tasks,” in IEEE

Symposium on Service-Oriented System Engineering (SOSE), 2015, pp.
347–356.

[55] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Mea-
suring and modeling programming experience,” Empirical Software

Engineering, vol. 19, no. 5, pp. 1299–1334, 2014.


