
Mining the Technical Roles of GitHub Users

João Eduardo Montandona, Marco Tulio Valenteb, Luciana L. Silvac

aTechnical College (COLTEC), Federal University of Minas Gerais, Belo Horizonte, Brazil
bDepartment of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Brazil

cDepartment of Computer Science, Federal Institute of Minas Gerais, Ouro Branco, Brazil

Abstract

Context: Modern software development demands high levels of technical specialization. These conditions make
IT companies focus on creating cross-functional teams, such as frontend, backend, and mobile developers. In this
context, the success of software projects is highly influenced by the expertise of these teams in each field. Objective:
In this paper, we investigate machine-learning based approaches to automatically identify the technical roles of open
source developers. Method: For this, we first build a ground truth with 2,284 developers labeled in six different roles:
backend, frontend, full-stack, mobile, devops, and data science. Then, we build three different machine-learning
models used to identify these roles. Results: These models presented competitive results for precision (0.88) and AUC
(0.89) when identifying all six roles. Moreover, our results show that programming-languages are the most relevant
features to predict the investigated roles. Conclusion: The approach proposed in this paper can assist companies
during their hiring process, such as by recommending developers with the expertise required by job positions.

Keywords: Technical Roles, Technical Expertise, Developers Profiles, Machine Learning, GitHub

1. Introduction

Software development is a human-intensive activity, which makes the success of software projects highly influ-
enced by the quality and expertise of their development workforce [22]. Besides, software systems are complex
engineering artifacts, which demand high levels of technical specialization in different areas [14]. These conditions
make IT companies focus on creating cross-functional teams with experts in several positions, such as databases,
security, frontend design, backend design, mobile apps, etc.

Recently, these companies are increasingly using social coding platforms—such as GitHub—to search for suit-
able candidates to their opened positions [37, 15, 53]. Previous works have proposed solutions to use the data of
such platforms to discover some skills of these candidates. They mainly focus on identifying which technologies do
software developers most work on, such as libraries, frameworks, and languages [56, 59, 64, 58, 30, 19, 66, 65, 45].
A few others have dedicated to discerning developers’ soft skills, including communication, teamwork, responsibility,
etc [56, 53, 2]. Lastly, some studies aimed on identifying the roles of developers in open source projects, like bug
fixer, bug triager, core developer, and tester [67, 52, 11, 21, 29, 1, 31, 20].

Usually, IT companies organize their development teams accordingly to the technology the developers master,
e.g., frontend, backend, mobile, and others [44]. For instance, frontend developers are specialized on the application’s
interface, as opposed to backend who are responsible for core features. In this context, we currently lack approaches
for inferring developers’ technical roles. Therefore, our key goal in this paper is to identify the technical roles played
by developers using information available in open source platforms.

Email addresses: joao.montandon@dcc.ufmg.br (João Eduardo Montandon), mtov.dcc.ufmg.br (Marco Tulio Valente),
luciana.lourdes.silva@ifmg.edu.br (Luciana L. Silva)

Preprint submitted to Elsevier November 24, 2020

Does the Identification of Technical Roles Matter?
We define technical roles as the ones derived from expertise on particular programming technologies (e.g., pro-

gramming languages) and/or architectural components (e.g., frontend frameworks). In this sense, distinguishing can-
didates’ technical roles are important as they represent a good proxy for the technologies and techniques each one
master [44]. For instance, data scientists might have a deeper understanding of data analyzing techniques. By con-
trast, frontend developers should master Web APIs concepts, such as RESTFul APIs, AJAX, etc. In fact, source code
hosting platforms—e.g., GitHub—are currently looking for alternatives to make their users profile richer by better
expressing their skills, accomplishments, and interests.1

Indeed, technical roles are one of the first aspects considered by recruiters when hiring developers for a specific
position. To provide evidence of this claim, we inspected the jobs listed by Stack Overflow Jobs2—the part of the
Q&A forum where companies post job offers—on October 25, 2018. Our key finding can be summarized as follows:

3,234 out of 5,027 Stack Overflow job posts (64%) include in their description at least one of the technical roles
investigated in this paper.

Additionally, we conducted a preliminary survey to better understand how GitHub is used when hiring software
developers. For this, we contacted all Stack Overflow users self-described as technical recruiters who were active
in the platform since 2018, and that publicly provided their e-mail for contact. We emailed these users with a brief
survey where we asked:

Do you often use GitHub in your hiring process? If you do, please select the options that best describe
your usage (you can mark multiple options).

We provided four distinct options for the second question, which were formulated after consulting the literature
about software expertise [37, 53, 7, 45]. To avoid possible bias introduced by the order of the options, we configured
our survey system to present them in random order for each contact. In total, we contacted 30 recruiters and received
7 answers (23% response rate). Six developers confirmed they use GitHub for hiring purposes. The survey results are
summarized in Figure 1.

Other, e.g., to contact developers

I often use GitHub to discern the quality of the code produced by developers
 (e.g., presence and quality of tests, usage of design patterns, and related practices)

I often use GitHub to discern developers behavior in open source projects
 (e.g., communication and teamwork skills)

I often use GitHub to discern the technologies developers work on
 (e.g., libraries, frameworks, languages, etc)

I often use GitHub to discern the technical roles of developers
 (e.g., backend, frontend, mobile, full−stack, etc)

0 1 2 3 4 5
Participants

If you do, please select the options that best describe your usage

Figure 1: Survey responses from the recruiters that use GitHub in their hiring process.

Considering our intention in this paper, the main finding of this survey can be summarized as follows:

1https://twitter.com/natfriedman/status/1133700043695886336
2https://stackoverflow.com/jobs

2

Five out of six technical recruiters use GitHub to discern the technical roles of the candidates, which is exactly
our central goal in this paper.

Although not directly linked with our goals here, another frequent usage of GitHub includes identifying which
technologies do developers work on (also with 5 answers) and to discern developers’ behavior in open source projects
(2 answers).

Proposed Study

In this study, we investigate an approach centered on supervised machine-learning techniques to identify develop-
ers’ technical roles by considering their contributions to public GitHub projects. More specifically, we infer develop-
ers’ technical roles by using features extracted from their public GitHub profiles (e.g., programming languages, short
bio, etc) and their GitHub projects. We first build a ground truth with the technical roles of 2,284 GitHub developers.
Then, we executed the proposed technique to identify developers in six popular technical roles:3 backend, frontend,
full-stack, mobile, devops, and data science. Lastly, we evaluated our approach by answering four research questions.

(RQ.1) How accurate are machine learning classifiers on identifying developers’ technical roles? Our best model
scored meaningful results for precision (0.75) and AUC (0.70), while it reported lower ones for recall and F1 (0.49
and 0.59, respectively). However, in the context of this work, precision-based metrics gain more importance, as tech-
nical recruiters are more interested in correctly identifying candidates that fit their needs (i.e., precision) instead of
identifying them (i.e., recall). When considered independently, our models provide the best results for data science
and frontend roles (0.86 and 0.77; precision). By contrast, we observed lower results for backend (0.62; precision).

(RQ.2) What are the most relevant features to distinguish technical roles? Features associated with programming
languages are relevant for all roles. Individually, data science’s top-10 most relevant features have the largest repre-
sentativeness rate: 33.2%. By contrast, backend top-10 features scores only 6.8% of the total.

(RQ.3) Do technical roles influence each other during classification? In this RQ, we investigate the gains achieved
with the use of Classifiers Chains in our problem. Suppose that a developer is predicted as having a role R1. After
making this prediction, R1 is used as input to the classifiers of R2, R3, R4, and R5 roles (assuming we analyze five
roles, as in our first three RQs). Specifically, we check the improvements achieved with Classifier Chains by setting
up and training 120 different classification models (i.e., covering all possible permutations of five roles). Overall, such
models present minor improvements in recall (+0.05) at the cost of precision scores (−0.05) when compared to the
ones in RQ.1.

(RQ.4) How effectively can we identify full-stack developers? Differently from the technical roles analyzed in the first
three RQs, the full-stack role is derived from the combined expertise in backend and frontend technologies. Therefore,
we conducted a separated study to identify full-stack developers and verify how they impact the classification of
backend and frontend developers. The proposed classifier performed very well when identifying FullStack, achieving
0.99 for precision and 0.71 for recall. Moreover, the addition of FullStack developers significantly improved the
identification of both Backend and frontend—0.87 and 0.86 for precision, respectively—after specific adjustments.

Our Contributions

We show that—based on high-level features retrieved from developers’ public profiles and projects in GitHub—it
is possible to infer major technical roles commonly used in industry to recognize software developers. Secondly, we
make publicly available our ground truth with the roles of 2,284 GitHub developers. This ground truth can motivate
and support further research in the area.

3Accordingly to https://insights.stackoverflow.com/survey/2018

3

Table 1: Regular expressions used to identify technical roles.

Role Regular Expression Examples

Backend /\bback.{0,1}end\b/i Back end, backend
Frontend /\bfront.{0,1}end\b/i Frontend, front-end
DevOps /\bdev.{0,1}ops\b/i DevOps, dev-ops
DataScience /\bdata.{0,1}scientist\b/i Data Scientist, data scientist
Mobile /\bmobile\b/i mobile, Mobile

Paper Structure
The rest of this paper has nine sections. First, Section 2 documents the data and methods used in the study, includ-

ing the ground truth creation, the features extracted from GitHub, and the machine learning setup. Section 3 presents
the results for the first three research questions. Section 4 describes the exploratory study conducted on full-stack
developers. In Section 5.3, we manually analyze some developers classified by our approach to qualitatively interpret
the classification results. In Section 5 we discuss the implications to both practitioneers and software engineering
community. Section 6 discusses threats to validity and Section 7 presents Related Work. Finally, Section 8 concludes
this work.

2. Study Design

2.1. Technical Roles
The focus of this paper is to propose an approach to unveil the technical roles of GitHub developers. We used

the Annual Developer Survey conducted by Stack Overflow in 2018 to select the roles considered in our study. More
than 100,000 developers from 183 countries answered this 30-minute survey where, among other questions, they
answered which technical roles they associate with the tasks they normally perform. In this paper, we study the top-4
most popular roles, according to this survey: Backend (58%), FullStack (48%), Frontend (38%), and Mobile (20%).
Moreover, we included DevOps (10.4%) and DataScience (7.7%) roles in our analysis as both are also frequently
featured in the top trending IT positions. Specifically, we first focus on five roles: Backend, Frontend, DevOps,
DataScience and Mobile (RQ.1, RQ.2, and RQ.3). Due to its particularity, we investigate the FullStack role separately
(RQ.4).

2.2. Ground Truth
As the proposed machine learning model relies on features extracted from GitHub to classify developers’ technical

roles, we fully avoided using GitHub’s data to generate our ground truth. Instead, we relied exclusively on Stack
Overflow’s data to build this ground truth, since this data would not be used further in our study. Other works use data
from Stack Overflow as a reliable source to assess developers’ expertise [64, 54, 2]. On the other hand, after building
the ground truth, our goal is to identify technical roles of GitHub users, i.e., by only considering GitHub data.

We followed a two-step process to build the ground truth, as explained next.
Stack Overflow Data Gathering: We used Stack Exchange Data Explorer (SEDE)4 to collect Stack Overflow users
with GitHub profiles. SEDE is a publicly available tool that allows querying data available in Stack Exchange plat-
form, using a web interface. On June 2nd, 2020, we queried SEDE for Stack Overflow users who have a link to
GitHub. This query returned 27,051 developers. We then extracted—through regular expressions—the GitHub user-
name from the provided links, and used GitHub GraphQL API5 to retrieve GitHub data (as described in Section 2.3)
for developers with valid usernames. During this procedure, we discarded developers with URLs pointing to invalid
GitHub usernames. We ended up with a dataset composed of 24,889 developers.
Labeling: In this step, we analyzed the profile information provided by Stack Overflow to label developers’ roles.
Figure 2 depicts an example of Stack Overflow’s user profile. Among the information available in his profile, this

4https://data.stackexchange.com/
5https://developer.github.com/v4/

4

Figure 2: Example of Stack Overflow developer profile. The data used in the ground truth creation is highlighted.

developer described himself as a “Lead Front End Developer”. Therefore, we relied on developers’ description text in
Stack Overflow to determine their roles. More specifically, we elaborated five distinct regular expressions to identify
each role, as described in Table 1. These regular expressions were configured to consider spaces, e.g., Back-end, Front
end) and to ignore case (e.g., Mobile and mobile. Considering the profile in Figure 2, our labeling process classify
him as Frontend (“Lead Front End Developer” and “Front end developer.”).
Selected Developers: By following the aforementioned steps, 1,802 developers were labeled with at least one technical
role. We discarded 140 (7.7%) developers with less than five GitHub public repositories. The reason is that our models
depend on developers being active on GitHub to infer their roles. Lastly, 1,662 developers were included in our ground
truth, containing 2,022 roles assignments.

Frontend is the role with more developers (820), followed by Mobile (453) and Backend (450). Table 2 shows
how these labels are distributed. As we can observe, 1,340 developers (80%) are associated with just one role. Most
of them are Frontend (545; 33%), or Mobile (352; 21%). Considering the 287 developers who have two or more
roles, the majority are both Backend and Frontend (198; 69%). By contrast, DataScience is the one with the smallest
intersection with other roles, i.e., one developer in all situations. 32 developers were labeled in three roles, most of
them in Backend, Frontend, and Mobile (23; 72%). Only three developers were assigned in four roles. Finally, we
found no developers who self-labeled themselves in all five roles.

2.3. Data Collection
After using Stack Overflow’s data to leverage our ground truth, we collected GitHub’s data for each developer in

this golden set. This data will be later transformed into a list of features to feed our prediction models (see Section
2.4). To provide a code agnostic solution (and therefore analyze repositories in multiple programming languages), we
collected mostly textual data about the developers’ profiles and the projects they own.6 The data we collected fits into
six distinct categories:

• Programming Language: Previous works report that programming languages are a reliable proxy to assess
developers’ expertise area [37, 38, 53, 24, 7]. For each developer, we first retrieved her list of projects, and
then extracted both commits and the main programming language of each one. Next, we derived the commits

6It is important to note that we have discarded forked projects in our analysis.

5

Table 2: Distribution of developers among the analyzed roles.

Roles Role # Devs.Backend Frontend Mobile DevOps DataScience

One

X 178
X 545

X 352
X 119

X 146

Two

X X 198
X X 29
X X 9
X X 1

X X 39
X X 4

X X 5
X X 1

X X 1

Three

X X X 23
X X X 7
X X X 1
X X X 1

Four X X X X 3

information into three dimensions: (a) the total number of commits; (b) the number of commits performed by
the developer (i.e., she is the author); and (c) the rate between both of them. Lastly, we grouped the projects
accordingly to the programming language collected earlier and averaged the resulting values. We ended up
with the following features for each developer, in each language: Language (total), Language (author), and
Language (rate).

• Short Bio: Short description of the developers’ main activities, manually provided by each one. We decided to
include this category in our analysis as some developers use this information to describe their field of activity,
e.g., “I develop iOS/Android apps with Swift/Kotlin language”.

• Projects’ Names: These names may contain keywords referencing specific technologies used in the projects,
e.g., android-data-binding-1, docker-example, etc. As observed in previous works, these technologies are also
indicators of expertise [58, 26, 54, 45]. Therefore, for each developer, we collected the name of her GitHub
projects and merged them into a single data point.

• Projects’ Topics: For the same reason as above, topics are generally used by GitHub developers to declare
technologies and tools used by their projects, e.g., ionic, gulp, and webpack. We also collected the GitHub
topics of the developers’ projects and merged them into a single data point as well.

• Projects’ Descriptions: This information can also provide clues about the technologies used by GitHub projects [27].
For instance, the description “a React.js contact manager” indicates that ReactJS is used in the project. For this
reason, we collected the short description of each developer’s project and merged them into a single data point.

• Projects’ Dependencies: We decided to include the list of dependencies since 3rd-party libraries are largely
used in modern software systems [59, 27, 30, 45]. For each project, we extracted its list of dependencies using
a GitHub GraphQL endpoint.7 Next, we assembled these features by summing up the number of times each
dependency was referenced in each developer’s projects. We initially collected data on 17,556 dependencies,
but we restricted ourselves to the top-1,000 most used ones as they are present in 81% of all analyzed projects.

7https://developer.github.com/v4/object/dependencygraphmanifest/

6

Table 3: Dataset with five target labels.

Developer Backend Frontend Mobile DevOps DataScience

D1 · · · 1 1 0 0 0
D2 · · · 1 0 0 1 0
D3 · · · 0 0 0 0 1
...

...
...

...
...

...

Dn · · · 0 0 1 0 1

2.4. Selected Features
To transform the data described in Section 2.3 into a list of features, which can be used as input for a machine

learning algorithm, we applied the following transformation steps:
Correlation Analysis: Initially, we ended up with 477 and 1,000 features for Programming Languages and Projects’
Dependencies categories, respectively. Due to this high number, we followed a correlation analysis procedure to
remove the ones with high correlations in each category. For this, we used corr function from pandas8 Python library
to generate a Spearman correlation matrix. Then, we identified pairs of features with a correlation greater than 0.7,
as previously adopted in the literature [8]; in such cases, we discarded the feature that has the highest correlation rate
when compared to the other ones. In total, we discarded 260 features for Programming Languages. Generally these
correlations happened with features belonged to the same language, but covering different domains, e.g., C (author)
and C (rate), CSS (author) and CSS (rate), etc. In most cases, we maintain the rate-based ones since they usually have
the lowest correlation rate with the others. As for Projects’ Dependencies, we discarded 202. Differently, the discarded
dependencies are more diverse, including specific (ionic-native-statusbar, a specific plugin for ionic framework) and
general (unicorn, an http webserver) purpose libraries.
Bag-of-Words: Machine learning algorithms do not deal with text directly. For this reason, we used a bag-of-words
to transform each textual category into a list of features. Bag-of-words is a simple and efficient technique to extract
features from text [25]. In summary, each word is mapped to a feature that describes its frequency in a document.
As in other studies [33, 55, 10], we performed the following steps to apply this technique on Short Bio, Projects’
Names, Projects’ Topics, and Projects’ Descriptions. First, we manually stripped out HTML tags, punctuation, and
numbers through regular expressions. Then, we removed stop words (e.g., of, him, the, and, etc.) using the default
English list provided by sklearn.text module. Finally, we used TfidfVectorizer9 class from sklearn library to apply
bag-of-words using the TF-IDF outcome as feature values. Following common guidelines for text processing [50], we
considered only words in a certain document frequency range: [0.04, 0.15] for Projects’ Descriptions, [0.03, 0.25]
for Projects’ Names, [0.01, 0.25] for Projects’ Topics, and [0.01, 0.20] for Short Bio. These limits were defined
after executing Random Forest classifier with 100 different bag-of-words configurations by randomly selecting dif-
ferent document frequency values in each configuration. We selected the configuration which presents improvements
in most evaluated metrics. The result of each configuration is available in our replication package for further reference.

After these steps (i.e., Correlation Analysis and Bag-of-Words), we ended up with 1,471 features, including 798 from
Projects’ Dependencies category, 217 from Programming Languages, 169 from Projects’ Descriptions, 155 from
Projects’ Names, 69 for Short Bio, and 63 from Projects’ Topics.

2.5. Machine Learning Setup

Multi-label Problem: Usually, classification problems rely on a single-label, i.e., each instance is associated with
a single label. On the other hand, a multi-label classification problem can associate more than one label to each
instance [62, 10]. Particularly, our dataset is a five-label classification problem since there are five distinct roles each
developer can be an expert on. Table 3 illustrates this dataset. In this example, developer D1 is associated with

8https://pandas.pydata.org/
9http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#

sklearn.feature_extraction.text.TfidfVectorizer

7

n 1…

.

.

.

.

.

.

.

.

.

0

0

MobileFeature

…

…

2

1

Developer

0…3 0

0

1

1

.

.

.

Frontend

n 1…

.

.

.

.

.

.

.

.

.

0

0

MobileFeature

…

…

2

1

Developer

0…3 1

.

.

.

1

Backend

0

1

0

0

1

1

.

.

.

Frontend

n 1…

.

.

.

.

.

.

.

.

.

0

0

MobileFeature

…

…

2

1

Developer

0…3

(a) Model I: no
additional information

(b) Model II: using Model I
predictions (Mobile) as features

(c) Model III: using both Models I and II
predictions (Mobile and Frontend) as features

Figure 3: Multi-label classification using Classifier Chains.

Backend and Frontend roles. Likewise, developer D2 is tied with Backend and DevOps. On the other hand, D3 is
associated just with DataScience.
Problem Transformation: We can approach a multi-label classification problem in different ways. For instance, we
can transform a multi-label dataset into a single-label one [35, 51]. Alternatively, some algorithms work directly with
multi-label datasets [62]. In this paper, we use two common transformation techniques for dealing with multi-label
datasets:

1. Binary Relevance (BR): This technique splits the original dataset into multiple binary classification problems,
i.e., one binary classification problem for each label [61, 35]. Then, such models are fitted independently. The
results can be shown either independently (one result for each model) or aggregated (weighted average of all
models). In this study, we calculated the aggregated results using a micro-average strategy, as it is recommended
for multilabel problems.10

2. Classifier Chains (CC): This technique links the binary classifiers along a chain in a way that each classifier
uses results from earlier ones in its predictions [51]. The goal is to take advantage of eventual dependencies
that might exist among target labels. Figure 3 illustrates a classification scenario using CC considering three
technical roles: Mobile, Frontend, and Backend. Each model includes previous predictions as features and
propagates its results along the chain. Figure 3a presents the first model in the chain (Model I). As we can see,
this model makes its predictions using only the available features. Model II (Figure 3b) predicts its values using
all features plus Model I predicted labels. Finally, the process is propagated to Model III, using all features
plus both Models I and II predicted labels. In this way, CC tackles the label independence problem faced by
BR [36, 69].

Machine Learning Classifier: We initially decided to use Random Forest [13] and Naive Bayes [39] classifiers to
train and test our models for identifying the technical roles of GitHub users. We selected Random Forest due to
its robustness to noise and outliers [60]. Moreover, Random Forest was successfully used in many application areas,
including software engineering problems [42, 47, 49, 18, 8, 10]. As we are dealing mostly with textual information, we
also decided to include Naive Bayes in our study as this classifier generally presents good results in textual scenarios,
such as spam filtering [43] and news classification [40]. We used the implementation provided by scikit-learn [46] for
both classifiers along with 10-fold cross-validation to select the best model. Basically, cross-validation splits the data
into k folds (in our case, k = 10), where k − 1 folds are used to fit the model and the remaining one is used to test the
predictions.

Evaluation Metrics: We use six metrics to evaluate the quality of the model’s predictions: precision, recall, F1-score,
AUC (Area Under the Curve), Jaccard Coefficient, and Hamming Loss. Precision measures the correctness, while
recall measures the completeness of the model predictions. F1-score is the harmonic mean of precision and recall.

10https://scikit-learn.org/stable/modules/model_evaluation.html#from-binary-to-multiclass-and-multilabel

8

AUC represents the area under the Precision-Recall (PR) curve. Unlike ROC, PR curves are more recommended for
assessing unbalanced datasets [50]. Jaccard Coefficient—also known as multi-label accuracy [12]—is the division of
the number of correctly predicted labels by all true labels. Hamming Loss is the ratio of wrong labels by the number
of labels [23]. As it is a loss measure, the lower the value, the better the model. Finally, we compared all metrics
against a Stratified baseline. This baseline considers the dataset distribution to perform its predictions. For instance,
in a dataset where 10% of the samples are positive labels, this baseline limits its positive predictions to 10% as well.

3. Results

(RQ.1) How accurate are machine learning classifiers in identifying technical roles?

Table 4a presents the general results for the first three roles using Binary Relevance (BR). The Random Forest
classifier presented the best results overall, scoring 0.77 for precision and 0.71 for AUC. Moreover, apart from recall,
Random Forest outperformed Naive Bayes for all evaluated metrics. Finally, both classifiers performed significantly
better than the Stratified Baseline. The baseline results are, for example, only 0.33 for precision.

Table 4b presents the classification results for each role, separately. Overall, Random Forest presented better re-
sults for precision when compared to Naive Bayes, and both outperformed the Stratified Baseline. Regarding Random
Forest, the classifier presented high precision rates—i.e., above 0.7—for 4 out of 5 roles: DataScience (0.86), Mobile
(0.78), Frontend (0.77) and DevOps (0.70). On the other hand, only Frontend achieved results as good as for recall
(0.78) and F1 (0.77). Further, the classifier scored poor results especially for Backend role (precision, recall, and F1
all equal to 0.28).

Metric Stratified Random Naive
Baseline Forest Bayes

Precision 0.33 0.77 0.51
Recall 0.32 0.49 0.62
F1 0.33 0.59 0.56
AUC 0.41 0.71 0.59
Jaccard Coeff. 0.20 0.42 0.39
Hamm. Loss 0.32 0.16 0.24

(a) Overall results

Role Precision Recall F1

Stratified Baseline
Backend 0.28 0.28 0.28
Frontend 0.48 0.46 0.47
Mobile 0.28 0.28 0.28
DevOps 0.08 0.06 0.07
DataScience 0.09 0.09 0.09

Random Forest
Backend 0.62 0.12 0.18
Frontend 0.77 0.78 0.77
Mobile 0.78 0.38 0.51
DevOps 0.70 0.13 0.20
DataScience 0.86 0.66 0.74

Naive Bayes
Backend 0.33 0.40 0.36
Frontend 0.69 0.82 0.75
Mobile 0.51 0.46 0.47
DevOps 0.24 0.47 0.32
DataScience 0.45 0.85 0.58

(b) Results for each role

Table 4: Binary Relevance results.

When it comes to Naive Bayes, we did not identify any score above 0.7 for precision; Frontend has the highest one
(0.69), followed by Mobile (0.51) and DataScience (0.45). In fact, we observed such good results in three scenarios
only: Frontend and DataScience for recall (0.82 and 0.85, respectively), and Frontend for F1 (0.75). Even though,
Naive Bayes was superior to the baseline in all scenarios.

9

2% 4% 6%
Python (rate)

backend (Bio)
CSS (rate)
CSS (total)

Ruby (rate)
Java (total)

JavaScript (author)
HTML (total)
HTML (rate)

PHP (rate)

Fe
at

ur
es

Backend

Category
Bio Language Rep. Description Rep. Name

2% 4% 6%
JavaScript (author)

Python (total)
analysis (desc.)

Python (rate)
R (rate)
R (total)

data (Bio)
Jupyter Notebook (rate)
Jupyter Notebook (total)

scientist (Bio)
DataScientist

2% 4% 6%
Python (rate)

JavaScript (author)
Go (total)

HCL (rate)
Shell (total)

Go (rate)
docker (desc.)
docker (name)

Shell (rate)
devops (Bio)

DevOps

2% 4% 6%
Java (total)
css (desc.)

Jupyter Notebook (total)
Java (rate)
CSS (rate)

HTML (rate)
Python (total)

end (Bio)
Python (rate)

JavaScript (author)
Frontend

2% 4% 6%
% Relevance

JavaScript (author)
HTML (total)

ios (desc.)
CSS (rate)

Java (total)
android (name)

Swift (author)
Java (rate)

Swift (rate)
mobile (Bio)

Mobile

Figure 4: Most relevant features for each technical role. Colors and shapes represent each feature category: developers bio ((Bio), green circle),
projects’ descriptions ((desc.), blue square), projects’ names ((name), pink diamond), and programming languages ((rate, author, and total), orange
triangle)

Random Forest presented the best results overall (e.g., 0.77, precision; 0.71, AUC), outperforming both Naive
Bayes and the baseline. When analyzed individually, DataScience and Frontend scored the best results for most
metrics (e.g., 0.86 and 0.77; precision), while Backend showed the worse ones (e.g., 0.62; precision).

(RQ.2) What are the most relevant features to distinguish technical roles?

Figure 4 shows the top-10 most relevant features by technical role. To identify these features, we executed the
Random Forest classifier for each role independently, using the same parameters as in RQ.1. We then selected the top-
10 features with the highest value from the feature relevance ranking provided by each model. In Figure 4, the colors
and shapes identify the category of each feature (programming languages, projects’ names, projects’ descriptions,
projects’ topics, projects’ dependencies, or short bio). Furthermore, we annotate the category associated with each
feature in its description. Finally, we normalized the ranking with respect to the feature with the highest value.

Features associated with programming languages are largely predominant for all five roles, representing 38 out of
50 features: 7 for DataScience, DevOps, and Mobile; 8 for Frontend, and 9 for Backend. From these, 19 (50%) are
rate-based, 13 (34%) consider the total number of commits, and 6 (16%) include only the commits performed by the
author. In other words, 66% of the relevant programming languages features do take into account actual developers’
contributions.

Next, short bio appears as the second most frequent with 6 occurrences, followed by projects’ descriptions and
projects’ names (3 and 2 occurrences, respectively). Nevertheless, short bio shows up as the most important feature
in three roles. Most of these features directly describes the role that is analyzed: scientist for DataScience, devops for
DevOps, mobile for Mobile, and backend for Backend. Surprisingly, projects’ topics and projects’ dependencies are
not present in any ranking position.

10

When we analyze the results for each role, we see that DataScience has the highest relevant features. Six features
stand out with more than 3% of relevance rate: scientist (Bio) (6.5%), Jupyter Notebook (total) (5.4%), Jupyter
Notebook (rate) (5.1%), data (Bio) (5.0%), R (total) (4.4%), and R (rate) (3.5%). Although these values may sound
low, our model includes 1,662 features. Also, these features are rather specific to the DataScience field; from them
only Jupyter Notebook (total) is also present in other roles (Frontend).

For Mobile, mobile (Bio) stands out with 3.0% of relevance rate, followed by Swift (rate) (2.0%) and Java (rate)
(1.6%). More specifically, three out of 10 features are directly associated to the iOS development platform (Swift
(rate), Swift (author), and ios (desc.)). Likewise, other three features are linked to the Android platform: Java (rate),
android (name), and Java (total). The features related to iOS and Android development represent 4.5% and 4.3% of
the top-10 listed features, respectively.

Regarding DevOps, we observe that devops (Bio) plays a prominent position in the ranking, with 4.4%. The next
ones are Shell (rate) (1.9%), docker (name) (1.7%), and docker (desc.) (1.6%). Frontend ranking presents a similar
distribution, where JavaScript (author) is the prominent feature with 3.6%, whereas the next five are valued between
1.8% (Python (rate)) and 1.6% (CSS (rate)).

Finally, we observe that no feature stands out in Backend ranking. The most relevant feature is PHP (rate), with
1.1%, while Python (rate) is the 10th feature in the ranking, with 0.8%. Even though, 5 out of the top-10 features are
linked with backend development: PHP (rate), Java (total), Ruby (rate), backend (Bio), and Python (rate).

Features related to programming languages are predominant for all five roles. In DataScience role, six features
stand out: scientist (Bio), Jupyter Notebook (total), Jupyter Notebook (rate), data (Bio), R (total), and R (rate).
On the other hand, fewer features are presented such importance in other roles: devops (Bio) for DevOps, mobile
(Bio) for Mobile, JavaScript (author) for Frontend. Lastly, no feature stands out from the others for Backend.

(RQ.3) Do technical roles influence each other during classification?
As explained in Section 2.5, Classifier Chains (CC) is a technique to deal with multi-label classification problems.

When using this technique, Binary Classifiers are ordered in such a way that each model uses previous predictions as
input. The rationale is that, given two labels A and B, if A influences B then we might want to use A to improve B’s
predictions.

Particularly, we executed the CC technique with Random Forest for all possible role combinations. In total, the
classifier was executed for 5! combinations, i.e., 120 different combinations. Figure 5 presents the results in six
different graphics, one for each metric considered in this study. For comparison reasons, the results are reported in
relation to RQ.1, which is used as a baseline in this RQ and it is represented by a dashed line in the figure. The
horizontal axis represents each CC configuration and the vertical axis the number of points each metric has above or
below the baseline. This means that the CC technique performed better than the baseline when its results are above
the dashed line, or worse otherwise.

Overall, all models show a minor increase of recall up to almost +0.05 (configurations 72, 89, and 96), at a cost
of lower precision (−0.05; configurations 47, 80, 93, and 113). We also observe minor improvements for both F1 and
Jaccard Coefficient (+0.02, configurations 60, 72, and 96; both), while AUC presented a minimal decrease (−0.01,
configurations 80 and 83). By contrast, we did not find any relevant change to the Hamming Loss score. Interestingly,
the highest improvements for recall, F1, and Jaccard—and also some of the minor setbacks for precision—happened
between configurations 49 and 60, when Mobile is classified first, followed by Backend or Frontend.

The results reveal that including technical roles predictions to the classifying process does not bring significant
improvements. Overall, we obtained minor improvements for recall, Jaccard, and F1 on the cost of precision.
These results are more consistent when Mobile is classified first, followed by Backend or Frontend.

4. Understanding the FullStack Role

Differently from the previously analyzed roles, FullStack developers are defined by their ability to work through
the whole application stack. In fact, the industry sees a FullStack developer as someone who can perform both

11

0.050
0.025

0
0.025
0.050

M
et

ric
 v

al
ue

AUC F1

0.050
0.025

0
0.025
0.050

Hamming Loss Jaccard

0 25 50 75 100 125
0.050
0.025

0
0.025
0.050

Precision

0 25 50 75 100 125
Classifier Chains permutations

Recall

Figure 5: Overall results using Classifier Chain, reported in relation to the RQ.1 baseline (i.e., dashed line).

Frontend and Backend tasks. The following quote, retrieved from a popular Medium post,11 illustrates this point:

Being a Full-Stack developer [. . .] means that you are able to work on both sides and understand what
is going on when building an application.

Due to this particularity, we decided to investigate the FullStack role in a specific section. First, we extended
the ground truth described in Section 2.2 to include developers self-identified as FullStack on Stack Overflow.12 The
new ground truth is composed by 2,284 developers; 853 of them are FullStack. From these, 783 were not labeled
either as Backend or Frontend, which contradicts the FullStack’s definition. To fix this inconsistency, we adapted
the labeling process to consider every FullStack developer as an expert in both Backend and Frontend roles.

After applying the same process described in Sections 2.3 and 2.4, this extended dataset ends up with 1,567
features: 819 from Projects’ Dependencies category, 219 from Programming Languages, 212 from Projects’ De-
scriptions, 146 from Projects’ Topics, 101 from Projects’ Names, and 70 from Short Bio.

(RQ.4) How effectively can we identify full-stack developers?
Table 5 presents the classification results for Random Forest using the Binary Relevance approach (RQ.1) and

including FullStack. Besides, we included the results for each of the five previous roles, along with the difference for
the one described in RQ.1.

Overall, all metrics reported significantly better results after including FullStack developers in the ground truth.
Precision, recall and F1 increase to 0.88 (+0.11), 0.69 (+0.20), and 0.77 (+0.18), respectively. Likewise the new AUC,
Jaccard Coefficient, and Hamming Loss reach 0.89 (+0.18), 0.69 (+0.10), and 0.13 (−0.03), respectively.

Considering each role, we observe that FullStack presented very high results: its precision is 0.99, recall is 0.71,
and F1 is 0.83. When it comes to the other roles, we noticed an interesting improvement for both Frontend and
Backend. Frontend’s value for F1 increased from 0.77 to 0.87 (+0.10), mainly due to recall improvement (from 0.78

11https://medium.com/coderbyte/a-guide-to-becoming-a-full-stack-developer-in-2017-5c3c08a1600c, Accessed at
2019-04-04.

12We used the following regex to label developers as FullStack: /\bfull.{0,1}stack\b/i.

12

Table 5: Binary Relevance results after including FullStack, Random Forest only.

Role Precision Recall F1

FullStack 0.99 0.71 0.83
Backend 0.87 (+0.25) 0.63 (+0.51) 0.73 (+0.55)
Frontend 0.86 (+0.09) 0.89 (+0.11) 0.87 (+0.10)
Mobile 0.80 (+0.03) 0.34 (−0.04) 0.47 (−0.04)
DevOps 0.75 (+0.05) 0.06 (−0.07) 0.11 (−0.09)
DataScience 0.86 (+0.00) 0.62 (−0.04) 0.71 (−0.03)

Overall13 0.88 (+0.11) 0.69 (+0.20) 0.77 (+0.18)

to 0.89; +0.11). Most important, Backend gained 55 points in F1 when compared to the one in RQ.1 (from 0.28 to
0.73). Recall is also largely responsible for this difference as it scored 0.63 against 0.28 before; an increase of 51
points. By contrast, we observe a minor negative impact in F1 for Mobile (−0.04), DevOps (−0.09), and DataScience
(−0.03). Even so, the precision score for these roles has either increased (Mobile, +0.03; DevOps, +0.05) or stayed
the same (DataScience).

We accredit this side effect as a consequence of expanding the dataset with the new FullStack developers. Partic-
ularly, in our second dataset, we found several FullStack developers with missing Backend or Frontend labels (more
precisely, 783 developers, as we mentioned before). In other words, once they are FullStack, for these developers it
is implicit that they should be also viewed as Backend or Frontend. Consequently, after labelling FullStack devel-
opers as Backend and Frontend we provided new information to the classifiers, which allowed them to improve their
predictions.

The proposed classifier performed very well when identifying FullStack developers (precision = 0.99). More-
over, FullStack developers have an interesting collateral effect, since they contributed to improving results of
both Backend (+25%) and Frontend (+9%).

5. Discussion

In this section, we start discussing the implications of our work to both academia and practitioners (Section 5.1).
Then, we argue about how the results for precision and recall should be interpreted in the context of this study (Section
5.2). Lastly, we analyze the performance of our approach by inspecting developers profiles in three different scenarios
(Section 5.3).

5.1. Implications
We shed light on the importance of unveiling technical roles; an expertise topic not yet extensively investigated

by the software engineering community. More specifically, we performed two preliminary studies to demonstrate
the importance of this topic. First, we inspected posts from Stack Overflow Jobs platform and find out that 64% of
5,027 offers are for one of the six technical roles studied in this paper. Second, we conducted a survey with technical
recruiters to understand which characteristics do they look for in GitHub profiles. Five out of six recruiters indicated
they search for clues to discern the technical roles of the candidates.

Besides, the proposed machine learning approach has most of its usage in hiring processes. In this context, when
hiring software developers, technical recruiters can benefit from the technical roles inferred by the proposed models.
This usage might occur in two main ways. First, by proactively identifying developers with the skills expected by
existing job positions in the company. Secondly, by reactively evaluating the profile of candidates who have already
applied to existing job positions, to assure they have the expected skills. In both cases, the inferred technical roles
should be used as a piece of additional information during the hiring process, which certainly includes other selection
instruments, such as technical interviews, reference letters, etc.

13Overall value is calculated using the same strategy as described in Section 2.5.

13

5.2. A Note on Precision and Recall
In general, our approach showed its effectiveness in revealing the technical roles of software developers given

their GitHub profiles. For instance, our model scored 0.88 for precision and 0.89 for AUC when considering all six
roles analyzed in this study (see Table 5); by contrast we achieved a lower result for recall (0.69). When analyzed
individually, we observe that the precision for each role ranges from 0.75 (DevOps) to 0.99 (FullStack). In fact,
except for DevOps all other roles achieved at least 80% of precision. On the other hand, only Frontend reached
similar value for recall (0.89); the other ones remained between 0.06 (DevOps) and 0.71 (FullStack).

Essentially, precision answers the following question “What proportion of positive identifications was actually
correct?”, whereas recall seeks to answer “What proportion of actual positives was identified correctly?”.14 In the
context of technical recruiters, we advocate that precision is more important than recall as they normally need to
identify a small set of candidates for the existing positions; i.e., they do not need to locate all developers matching
their job positions in the GitHub universe. Furthermore, companies avoid at most a false positive (a bad hiring), as it
is more expensive [41, 9]. On the other hand, we understand that such limitation might represent an issue for software
developers, as qualified developers can eventually be discarded for not scoring meaningful results in the features
considered in this study.

5.3. Manual Analysis
We manually inspected developers profiles to analyze their predictions so we can better understand the proposed

classification results. Specifically, we analyze developers in three distinct scenarios: correct classifications (True
Positive); wrongly classified in a given role (False Positive); and not classified in a given role, despite being so (False
Negative).

5.3.1. True Positive Scenario
Developers in this group have had their roles correctly predicted by our approach. In this scenario, we inspected

developer D844, classified as Mobile Developer. D844 owns 22 public GitHub projects, most of them related to mobile
development; four projects have Swift as their main programming language, and other five have the word Android
in their description. Moreover, another four projects are implemented in Java and contain experiments about chart
animations in Android. In total, 19 out of 22 projects are directly related to mobile development. In his personal
website, D844 describes himself as “Android & iOS Engineer — App Maker”. Through D844’s GitHub page, we can
also reach his LinkedIn profile and find out he has been working with mobile development since 2014.

5.3.2. False Positive Scenario
This group contains developers wrongly predicted as experts in any of the analyzed roles. We inspected the profile

of D1341, which is not a DevOps developer, but was predicted as such. In his LinkedIn profile, D1341 identifies himself
as a “Data Engineer”, also mentioning he works in this position since 2016. D1341 received most endorsements in
Python (19), Data Science, and Machine Learning (18, both). By contrast, D1341 has few endorsements in DevOps-
specific technologies: one for AWS and two for Linux. He also obtained certifications in “Machine Learning” and
“Scalable Microservices with Kubernetes”. D1341 is very active on GitHub, performing 711 contributions in the last
year. This developer owns 30 projects in 13 different languages, most of them in Python (five projects). Further,
Docker appears in the description of two other projects described as an assistant tool for data analysis. Therefore, due
to his limited experience with DevOps-based tools and languages, D1341 should not be classified as a DevOps.

5.3.3. False Negative Scenario
Developers are considered False Negative when they are not classified as experts in a given role, despite being so.

For this scenario, we examined D68, who is a Frontend developer, but was not identified as such. In his short bio,
D68 describes himself as a “Frontend Engineer”. On GitHub, this developer has performed 1,018 contributions over
the last year, where 51% of them were commits. Even though, D68 is the owner of only 12 projects; five of them
are directly related to frontend technologies (e.g., JavaScript, vue.js, etc). The remaining projects are implemented

14Questions retrieved from https://developers.google.com/machine-learning/crash-course/classification/precision-

and-recall

14

in other languages, such as Java, PHP, and Python. Moreover, his projects’ descriptions do not mention the use of
Frontend technologies. In fact, five projects do not contain any description at all. In other words, the programming
languages and short bio used by D68 are the only features directly related to Frontend, but their presence was not
enough to label him correctly.

False negative predictions gather our attention as they directly impact the recall’s performance. As our classifiers
scored lower values for this metric in Mobile and DevOps roles, we decided to extend this analysis by inspecting
10 new randomly selected developers, five in each role. Overall, we observe these developers do not hold specific
information to classify them in such roles. For instance, the five selected DevOps developers maintain 70 projects
in total. However, only one is mainly implemented using Shell Script, which is the second most relevant feature for
this role (see Figure 4). One developer mentioned the devops keyword in his bio, but this was not reinforced by
the other relevant features; only one of his 18 projects is implemented using a relevant language (Python). Similar
behavior is noted when analyzing Mobile developers. The majority of the projects analyzed are not written in Mobile-
based languages, such as Swift and Java. Interestingly, most of them are implemented with Frontend-based ones,
such as JavaScript and TypeScript. We analyzed this characteristic further and found out that some of these projects
rely on cross-platform Mobile frameworks—e.g., cordova, ionic, etc—which are not in the top-10 most relevant
features. In fact, two out of the five developers explicitly stated they are Frontend developers with experience in
building mobile web apps. Lastly, relevant keywords like android, ios, and mobile, are indeed mentioned in the
repositories of one developer but in a format that prevents their extraction by our bag-of-words tokenization process,
e.g., iOSUIAutomation, MyFirstAndroid, etc.

6. Threats to Validity

The following issues are possible threats to our results:
Target Roles: We analyzed six technical roles in this paper. Although they represent a restricted number of roles,
we selected the ones among the most popular, based on a recent large-scale survey conducted by Stack Overflow.
Moreover, they cover 64% of the jobs recently listed at Stack Overflow jobs, as mentioned in the Introduction.
Ground Truth: Our dataset is restricted to developers who have profiles on both Stack Overflow and GitHub. Besides,
the ground truth is based on developers’ public activities on GitHub. Evidently, they represent a subset of all activities
of several developers. This limitation may increase false negatives in particular scenarios. For example, a developer is
mobile but the publicly available data characterizes him/her as backend developer. A potential direction for tackling
this problem could be the usage of developers’ activities from additional data sources. Furthermore, we followed an
automated process to label the 2,284 developers in the ground truth. This process is subjected to bias since it relies on
the description provided by the developer on Stack Overflow. Further work should consider a semi-automatic labeling
strategy [63] or semi-supervised learning techniques [16] to evaluate the accuracy of our labeling process.
Multi-label Classification: Other classification techniques can be applied in multi-label problems, e.g., Label Pow-
erset [28]. However, we rely on the two most used techniques to handle multi-label classification. Moreover, we
used two well-known classification algorithms—Random Forest and Naive Bayes. Despite that, further work should
consider other classification algorithms, such as XGBoost [17].
Thresholds: As usual in machine learning studies, we acknowledge that our results depend on different thresholds,
which are used for example to discard correlated features (Pearson ≥ 0.7), to limit the number of features used
in projects’ descriptions ([0.04, 0.15]), projects’ names ([0.01, 0.25]), projects’ topics ([0.01, 0.25]), and short bio
([0.01, 0.20]), as reported in Section 2.4. As a general guideline, we always use conservative thresholds. Furthermore,
we experimented with other threshold values in all cases and selected the ones that presented the best results.

7. Related Work

Related work approaches the expertise of software developers in two major standpoints. The first one, known as
domain expertise, address expertise in the context of specific projects, ignoring developers’ technical background. For
instance, these works involve the identification of source code file owners [68, 21, 1], core developers [29, 31, 5, 6],
or organizational and contribution roles [4, 11, 20]. The second category, known as technical expertise, focuses on

15

revealing developers’ technical abilities. Most studies in this second group focus on identfying expertise in 3rd-party
technologies [45, 59, 65, 26, 27, 64], source code quality [37, 38], and soft skills [7].

7.1. Domain Expertise

Avelino et al. [6] relied on developers commit activity to estimate truck-factors (i.e., a source code authorship
metric). Furthermore, they tested their approach against 119 open source systems to identify their core developers.
Honsel et al. [29] use multi-dimensional Hidden Markov Models to predict the contribution behavior of developers.
For each developer in a project, they collect data (commits, bug comments, and mailing lists) and classify them into
core, major, and minor classes. Previously, Alonso et al. [3] build a rule-based model to derive developers’ expertise
based on the frequency of their commits. Their model links a list of categories—extracted from the directory structure
of each project—to each developer based on the frequency of changes they perform in each directory. Da Silva et
al. [21] introduced a technique to leverage expertise in system’s artifacts at source code method-level. The authors
rely on a GPU-based approach to leverage such expertise information. Kagdi et al. [32] mine software repositories
to recommend developers who master a particular component of a project. Other works investigated expertise in
the context of organizational and contribution roles [11, 20]. For example, Bhattacharya et al. [11] analyzed the use
of graph models to classify developers on seven organizational roles: patch tester, assist, triager, bug analyst, core
developer, bug fixer, and patch-quality improver. Lastly, Yu and Ramaswamy [68] also mined software repositories
to predict developers’ roles, but they focus on the interactions among them (e.g., frequency of co-editing). Note that
the works in this subsection aim at recommending developers to maintain specific projects. This scenario fits well in
the OSS development field. On the other hand, the IT industry is also interested in identifying developers’ technical
abilities regardless their previous knowledge in specific projects [48, 34, 56].

7.2. Technical Expertise

In fact, most related work addresses the technical expertise problem towards 3rd-party technologies. In recent
work, we [45] proposed two methods to assess the expertise level of 575 developers in three popular JavaScript
libraries. Basically, we used features collected from GitHub activity—e.g., commits frequency, code churn, etc.—to
classify developers into three expertise levels: novice, intermediate, and expert. Previously, Teyton et al. [59, 57]
proposed a search engine to locate—based on syntactical changes—developers with experience on some technical
skills, e.g., Java, Linux, Apache, etc. Similarly, Wan et at. [65] developed a probabilistic model to assess developers’
coding abilities on software technologies. Lastly, Greene and Fischer [26] also proposed a tool that extracts and
presents developers’ skills data from GitHub, including skills on programming languages, libraries, and frameworks.
Other authors proposed matching the technologies that developers use with the ones required in specific tasks. For
example, Hauff and Gousios [27] extracted user activity from GitHub and job advertisements to recommend matching
open jobs to developers. They leverage a vector space model—using data extracted from GitHub profiles and job
advertisements of a large UK job portal—and rely on cosine similarity to match developers and jobs. Venkataramani
et al. [64] proposed a model that, by using developers’ activity information on GitHub, recommends Stack Overflow
questions for these developers to answer. By contrast, our work focus on detecting developers’ expertise into a higher
granularity level, i.e., technical roles.

Other works approached technical expertise differently. For exmaple, Agrawal et al. [1] used clustering tech-
niques to analyze which technical factors are more relevant for backend developers and testers. Differently from our
work, the authors consider only commits, timestamps, and file names, whereas we collect a wider set of features, i.e.,
programming languages, developers’ bio, and projects’ metadata. Other researchers investigated the importance of
source code quality when analyzing candidates for opened positions. Marlow et al. [37, 38] interviewed both devel-
opers and recruiters to understand which information is more relevant when evaluating online profiles in developer
communities. In general, interviewees reported some cues used by them when assessing these profiles, including,
which programming languages and libraries do developers use, as well as the readability of their code. Lastly, there
are studies mentioning the importance of soft skills in the software development environment. Baltes and Diehl [7]
presented a conceptual theory structuring the relevant factors in software development. Among the several abili-
ties listed in their work, the authors highlighted the importance that proper personal skills—such as communication,
critical thinking, and communication—has on software development.

16

8. Conclusion

The increasing complexity and relevance of modern software systems are fostering the specialization of software
developers in particular components and technologies. As a result, when hiring developers, companies usually do not
look for developers with a broad range of skills, but for ones who can work with specific technologies and in specific
tasks. Motivated by this context, in this paper we described an approach centered on supervised machine learning to
predict six widely popular technical roles of developers nowadays: Backend, Frontend, Mobile, FullStack, Data-
Science, and DevOps. Using features extracted from the public profiles of GitHub users, we obtained great results
for identifying all six roles in terms of precision (0.88) and AUC (0.89). By contrast, we observed lower results for
DevOps and Mobile regarding recall, e.g., 0.06 and 0.34, respectively. Even so, we believe that this study can offer
good assistance to technical recruiters as, in their context, identifying correct candidates (precision) is more relevant.
As future work, we plan to extend our research in the following lines: (a) improve the classification process by adding
new features (e.g., frameworks) and by testing others classifiers (e.g., XGBoost [17]); (b) validate our results (and
the practical usage of our approach) through a large-scale survey with real developers, and (c) Implement a browser
plug-in to inform the technical roles of GitHub existing profiles.
Replication Package: Our data and our scripts—in a Jupyter Notebook format—are publicly available at the following
URL: https://doi.org/10.5281/zenodo.3986172.

References

[1] Agrawal, K., Aschauer, M., Thonhofer, T., Bala, S., Rogge-Solti, A., and Tomsich, N. (2016). Resource Classification from Version Control
System Logs. In IEEE International Enterprise Distributed Object Computing Workshop (EDOCW), pages 249–258.

[2] Ahmed, I. (2018). What Makes a Good Developer ? An Empirical Study of Developers ’ Technical and Social Competencies. In IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages 319–321.

[3] Alonso, O., Devanbu, P. T., and Gertz, M. (2008). Expertise Identification and Visualization from CVS. In International Working Conference
on Mining Software Repositories (MSR), pages 125–128.

[4] Anvik, J., Hiew, L., and Murphy, G. C. (2006). Who should fix this bug? In International Conference on Software Engineering (ICSE), pages
361–370.

[5] Avelino, G., Passos, L., Hora, A., and Valente, M. T. (2017). Assessing code authorship: The case of the Linux kernel. In 13th International
Conference on Open Source Systems (OSS), pages 151–163.

[6] Avelino, G., Passos, L., Hora, A., and Valente, M. T. (2019). Measuring and analyzing code authorship in 1+118 open source projects. Science
of Computer Programming, 1(1):1–34.

[7] Baltes, S. and Diehl, S. (2018). Towards a theory of software development expertise. In Symposium on the Foundations of Software Engineering
(FSE), pages 1–14.

[8] Bao, L., Xing, Z., Xia, X., Lo, D., and Li, S. (2017). Who Will Leave the Company?: A Large-Scale Industry Study of Developer Turnover by
Mining Monthly Work Report. In Working Conference on Mining Software Repositories (MSR), pages 170–181.

[9] Behroozi, M., Parnin, C., and Barik, T. (2019). Hiring is Broken: What Do Developers Say About Technical Interviews? In Visual Languages
and Human Centric Computing (VLHCC), pages 1–9.

[10] Beyer, S., Macho, C., Pinzger, M., and Di Penta, M. (2018). Automatically classifying posts into question categories on stack overflow. In
International Conference on Program Comprehension (ICPC), pages 211–221.

[11] Bhattacharya, P., Neamtiu, I., and Faloutsos, M. (2014). Determining Developers’ Expertise and Role: A Graph Hierarchy-Based Approach.
In International Conference on Software Maintenance and Evolution (ICSME), pages 11–20.

[12] Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. (2004). Learning Multi-label Scene Classification. Pattern Recognition, 37(9):1757 –
1771.

[13] Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.
[14] Brooks Jr, F. P. (1995). The mythical man-month. Addison-Wesley.
[15] Capiluppi, A., Serebrenik, A., and Singer, L. (2013). Assessing technical candidates on the social web. IEEE Software, 30(1):45–51.
[16] Chapelle, O., Schlkopf, B., and Zien, A. (2006). Semi-Supervised Learning. Cambridge, MIT Press.
[17] Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In International Conference on Knowledge Discovery and

Data Mining (KDD), pages 785–794.
[18] Coelho, J., Valente, M. T., Silva, L. L., and Shihab, E. (2018). Identifying Unmaintained Projects in GitHub. In International Symposium on

Empirical Software Engineering and Measurement (ESEM), pages 14–21.
[19] Constantinou, E. and Kapitsaki, G. M. (2016). Identifying Developers’ Expertise in Social Coding Platforms. Euromicro Conference on

Software Engineering and Advanced Applications (SEAA), (1):63–67.
[20] Constantinou, E. and Kapitsaki, G. M. (2017). Developers expertise and roles on software technologies. In Asia-Pacific Software Engineering

Conference (APSEC), pages 365–368.
[21] Da Silva, J. R., Clua, E., Murta, L., and Sarma, A. (2015). Niche vs. Breadth: Calculating Expertise Over Time Through a Fine-grained

Analysis. In International Conference on Software Analysis, Evolution, and Reengineering (SANER), pages 409–418.
[22] DeMarco, T. and Lister, T. (1999). Peopleware: Productive Projects and Teams. Dorset House, 2 edition.

17

[23] Dembczyński, K., Waegeman, W., Cheng, W., and Hüllermeier, E. (2012). On Label Dependence and Loss Minimization in Multi-label
Classification. Machine Learning, 88(1):5–45.

[24] Ford, D., Barik, T., Rand-Pickett, L., and Parnin, C. (2017). The tech-talk balance: what technical interviewers expect from technical
candidates. In International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE), pages 43–48.

[25] Goldberg, Y. (2017). Neural Network Methods in Natural Language Processing (Synthesis Lectures on Human Language Technologies).
Morgan & Claypool Publishers, 1th edition.

[26] Greene, G. J. and Fischer, B. (2016). CVExplorer: identifying candidate developers by mining and exploring their open source contributions.
In International Conference on Automated Software Engineering (ASE), pages 804–809.

[27] Hauff, C. and Gousios, G. (2015). Matching GitHub Developer Profiles to Job Advertisements. In Working Conference on Mining Software
Repositories (MSR), pages 362–366.

[28] Herrera, F., Charte, F., Rivera, A. J., and del Jesus, M. J. (2016). Multilabel Classification: Problem Analysis, Metrics and Techniques.
Springer.

[29] Honsel, V., Herbold, S., and Grabowski, J. (2016). Hidden Markov Models for the Prediction of Developer Involvement Dynamics and
Workload. In International Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE), pages 1–10.

[30] Huang, W., Mo, W., Shen, B., Yang, Y., and Li, N. (2016). CPDScorer: Modeling and Evaluating Developer Programming Ability across
Software Communities. In International Conference on Software Engineering and Knowledge Engineering (SEKE), pages 87–92.

[31] Joblin, M., Apel, S., Hunsen, C., and Mauerer, W. (2017). Classifying Developers into Core and Peripheral: An Empirical Study on Count
and Network Metrics. In International Conference on Software Engineering (ICSE), pages 164–174.

[32] Kagdi, H., Hammad, M., and Maletic, J. I. (2008). Who can Help me with this Source Code Change? In International Conference on
Software Maintenance (ICSM), pages 157–166.

[33] Kim, S., E. James Whitehead, J., and Zhang, Y. (2008). Classifying software changes: Clean or buggy? IEEE Transactions on Software
Engineering, 34(2):181–196.

[34] Litecky, C., Aken, A., Ahmad, A., and Nelson, H. J. (2008). Mining for Computing Jobs. IEEE Software, pages 78–85.
[35] Luaces, O., Dı́ez, J., Barranquero, J., del Coz, J. J., and Bahamonde, A. (2012). Binary relevance efficacy for multilabel classification.

Progress in Artificial Intelligence, 1(4):303–313.
[36] Madjarov, G., Kocev, D., Gjorgjevikj, D., and Deroski, S. (2012). An Extensive Experimental Comparison of Methods for Multi-label

Learning. Pattern Recognition, 45(9):3084–3104.
[37] Marlow, J. and Dabbish, L. (2013). Activity Traces and Signals in Software Developer Recruitment and Hiring. In Conference on Computer

Supported Cooperative Work (CSCW), pages 1–11. ACM Press.
[38] Marlow, J., Dabbish, L., and Herbsleb, J. (2013). Impression Formation in Online Peer Production : Activity Traces and Personal Profiles in

GitHub. In Conference on Computer Supported Cooperative Work (CSCW), pages 117–128.
[39] Maron, M. E. (1961). Automatic indexing: An experimental inquiry. Journal of the ACM (JACM), 8(3):404–417.
[40] McCallum, A. and Nigam, K. (1998). A comparison of event models for naive bayes text classification. In International Conference on

Machine Learning, pages 41–48.
[41] McDowell, G. (2015). Cracking the Coding Interview: 189 Programming Questions and Solutions. CareerCup, LLC.
[42] Menzies, T., Butcher, A., Cok, D., Marcus, A., Layman, L., Shull, F., Turhan, B., and Zimmermann, T. (2013). Local Versus Global Lessons

for Defect Prediction and Effort Estimation . IEEE Transactions on Software Engineering, 39(6):822–834.
[43] Metsis, V., Androutsopoulos, I., and Paliouras, G. (2006). Spam filtering with naive bayes – which naive bayes? In Conference on Email and

Anti-Spam (CEAS), pages 1–9.
[44] Montandon, J. E., Politowski, C., Silva, L. L., Valente, M. T., Petrillo, F., and Guéhéneuc, Y.-G. (2020). What Skills do IT Companies look

for in New Developers? A Study with Stack Overflow Jobs. Information and Software Technology, pages 1–6.
[45] Montandon, J. E., Silva, L. L., and Valente, M. T. (2019). Identifying Experts in Software Libraries and Frameworks among GitHub Users.

In International Conference on Mining Software Repositories (MSR), pages 1–12.
[46] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830.

[47] Peters, F., Menzies, T., and Marcus, A. (2013). Better Cross Company Defect Prediction . In Working Conference on Mining Software
Repositories (MSR), pages 409–418.

[48] Prabhakar, B., Litecky, C. R., and Arnett, K. (2005). IT skills in a tough job market. Communications of the ACM, 48(10):91–94.
[49] Provost, F. and Fawcett, T. (2001). Robust Classification for Imprecise Environments. Machine learning, 42(3):203–231.
[50] Provost, F. and Fawcett, T. (2013). Data Science for Business: What You Need to Know About Data Mining and Data-analytic Thinking.

O’Reilly Media, Inc., 1st edition.
[51] Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011). Classifier Chains for Multi-label Classification. Machine Learning, 85(3):333–359.
[52] Robles, G., Gonzalez-Barahona, J. M., and Herraiz, I. (2009). Evolution of the core team of developers in libre software projects. In Working

Conference on Mining Software Repositories (MSR), pages 167–170.
[53] Sarma, A., Chen, X., Kuttal, S., Dabbish, L., and Wang, Z. (2016). Hiring in the global stage: Profiles of online contributions. In International

Conference on Global Software Engineering (ICGSE), pages 1–10.
[54] Saxena, R. and Pedanekar, N. (2017). I Know What You Coded Last Summer. In Conference on Computer Supported Cooperative Work and

Social Computing (CSCW), pages 299–302.
[55] Shirabad, J. S., Lethbridge, T. C., and Matwin, S. (2003). Mining the maintenance history of a legacy software system. In International

Conference on Software Maintenance (ICSM), pages 95–104.
[56] Singer, L., Figueira Filho, F., Cleary, B., Treude, C., Storey, M.-A., and Schneider, K. (2013). Mutual assessment in the social programmer

ecosystem. In ACM Computer Supported Cooperative Work (CSCW), pages 103–116.
[57] Teyton, C., Palyart, M., Falleri, J.-R., Morandat, F., and Blanc, X. (2014a). Automatic Extraction of Developer Expertise. In International

Conference on Evaluation and Assessment in Software Engineering (EASE), pages 1–10.

18

[58] Teyton, C., Palyart, M., Falleri, J.-R., Morandat, F., and Blanc, X. (2014b). Automatic Extraction of Developer Expertise Categories and
Subject Descriptors. In International Conference on Evaluation and Assessment in Software Engineering (EASE), pages 1–10.

[59] Teyton, Cedric and Falleri, Jean-Rémy and Morandat, Floréal and Blanc, X. (2013). Find your Library Experts. In Working Conference on
Reverse Engineering (WCRE), pages 202—-211.

[60] Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. (2015). What are the Characteristics of High-rated Apps? A Case Study on Free Android
Applications. In International Conference on Software Maintenance and Evolution (ICSME), pages 301–310.

[61] Tsoumakas, G., Katakis, I., and Vlahavas, I. (2010). Mining Multi-label Data, pages 667–685. Springer.
[62] Tsoumakas, G., Katakis, I., and Vlahavas, I. (2011). Random k-labelsets for multilabel classification. IEEE Transactions on Knowledge and

Data Engineering, 23(7):1079–1089.
[63] Vajda, S., Rangoni, Y., and Cecotti, H. (2015). Semi-automatic ground truth generation using unsupervised clustering and limited manual

labeling: Application to handwritten character recognition. Pattern Recognition Letters, 58:23–28.
[64] Venkataramani, R., Gupta, A., Asadullah, A., Muddu, B., and Bhat, V. (2013). Discovery of technical expertise from open source code

repositories. In International Conference on World Wide Web (WWW), pages 97–98.
[65] Wan, Y., Chen, L., Xu, G., Zhao, Z., Tang, J., and Wu, J. (2018). SCSMiner: Mining Social Coding Sites for Software Developer Recom-

mendation with Relevance Propagation. World Wide Web, pages 1–21.
[66] Wang, Z., Sun, H., Fu, Y., and Ye, L. (2017). Recommending crowdsourced software developers in consideration of skill improvement. In

IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 717–722.
[67] Ye, Y. and Kishida, K. (2003). Toward an understanding of the motivation open source software developers. In International Conference on

Software Engineering (ICSE), pages 419–429.
[68] Yu, L. and Ramaswamy, S. (2007). Mining CVS Repositories to Understand Open-Source Project Developer Roles. In International Workshop

on Mining Software Repositories (MSR), pages 1–10.
[69] Zhang, M.-L. and Zhou, Z.-H. (2014). A Review on Multi-Label Learning Algorithms. IEEE Transactions on Knowledge and Data Engi-

neering, 26(8):1819–1837.

19

