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Abstract. Software has “eaten the world” as we witness the rise of companies
whose business model is totally centered on software. The successful imple-
mentation of these systems heavily depends on the quality and expertise of their
software development teams. However, software-based companies are facing an
increasing software developers shortage issue. On the one hand, technical re-
cruiters are increasingly relying on the information provided by Social Coding
Platforms (SCPs)—e.g., GitHub, Stack Overflow, etc—to prospect new talent.
On the other hand, the large volume of data available force job recruiters to
only assess superficial information of their candidates. In order to tackle this
problem, we described in the thesis an extensive investigation of methods and
techniques to identify the technical skills of software developers based on their
activity in SCPs. We organized the thesis in three major working units, where
we first investigated the most demanded technical and soft skills under the eyes
of IT companies, and then assessed developers’ technical skills from deep and
broad prespectives. These studies resulted in contributions to both research and
industrial communities.

1. Problem and Motivation

Software development is a human-centric activity, which makes developers the most
important asset of software companies [DeMarco and Lister 1999]. Moreover, after
25 years of the invention of modern Internet technologies, software has “eaten the world”
and we everyday observe the rise of companies totally centered on software. Among the
examples, we can mention companies that recently relied on software to disrupt traditional
markets, such as Uber, AirBnB, Zoom, Google, Facebook, and many others. In fact, the
recent COVID-19 pandemic accelerated the transition of a variety of businesses to the
digital world.

Specifically, software systems have become more complex artifacts, which incre-
asingly demands new levels of specialization of their development teams. For exam-
ple, current software teams include experts in different areas, such as databases, security,
human-computer interface (or front-end design), core features (or back-end design), mo-
bile development, etc. Besides, software companies require their developers to master
several specific technologies so they can perform their daily work.

This scenario is leading to a worldwide shortage of skilled software engineers.
A recent study conducted at BrassComm1 estimated that more than 420,000 professionals

1https://brasscom.org.br/pdfs/estudo-brasscom-formacao-educacional-
e-empregabilidade-em-tic/, accessed in March 2021.



will be demanded by the IT industry in Brazil until 2024, whereas only 160,000 will be
available in the same period, i.e., a deficit of 260,000 professionals. As a second example,
the Bureau of Labor Statistics2—a US government agency that provides statistics about
the labor market—reported that “the employment of software developers is projected to
grow 24% from 2016 to 2026, much faster than the average for all occupations”. Con-
sequently, IT-based companies are giving high importance when it comes to hiring new
professionals. For instance, Mark Zuckerberg has publicly stated that “our [Facebook’s]
policy is literally to hire as many talented engineers as we can find”.3

In the context of industrial software development, the ideal large-scale hiring pro-
cess should enable technical recruiters to visualize a large number of developers’ profi-
les containing different levels of technical expertise, such as their principal hard skills4

and professional roles. Put differently, companies are interested in candidates who have
deep knowledge in their main area but also have a broad understanding of the software
development cycle as a whole. People carrying such a profile are known as T-shaped
professionals, and pick up the characteristics of both generalists (broad) and specialists
(deep). These professionals are highly-valued due to their capacity of solving problems
in a multidisciplinary environment, and to interact with other fields in order to build an
innovative product [Susskind and Susskind 2015, Epstein 2019].

2. Goals and Contributions
Thereby, in this thesis we study techniques to identify developers’ technical skills in
both broad and deep perspectives given their activity in Social Coding Platforms.
To make this research possible, we conducted three major studies. First, we study in
more detail the side view of the skills required by IT companies when looking for new
professionals. In the second study, we rely on data-driven methods to mine developers’
expertise in a deep perspective. More specifically, we assess the expertise level of software
developers in third-party libraries. The third study also relied on data-driven techniques
but to evaluate the expertise of software developers in a broad perspective, where we
proposed to automatically identify their technical roles.

These studies resulted in the following contributions:

• We conducted a large-scale analysis of 20,000 job opportunities, and revealed
which kind of hard and soft skills are demanded in 14 IT professional roles, inclu-
ding Backend, Frontend, Mobile, DevOps, etc. We observed that programming
languages are largely required even in management-based positions. Further-
more, experience in third-party components—i.e., libraries and frameworks—is
frequently mentioned in developer-based ones. Our findings also reinforced
the importance of communication, collaboration, and problem-solving skills to
software developers. Section 3 covers this investigation in more detail.

• We build a public dataset containing activity-based information of 575 deve-
lopers experts in three well-known JavaScript libraries: FACEBOOK/REACT,

2https://www.bls.gov/ooh/computer-and-information-technology/
software-developers.htm, accessed in November 2020

3https://code.org/quotes, accessed in November 2020
4In this thesis, the terms hard skills and technical skills are used interchangeably.



MONGODB/NODE-MONGODB, and SOCKETIO/SOCKET.IO. We then analyzed the
performance of supervised and unsupervised approaches to predict developers’
expertise level. In summary, we were able to produce clusters where the number
of experts ranges from 65% to 75%. We also triangulated the results of such
models with information available on LinkedIn profiles. Indeed, 72% of the
experts in FACEBOOK/REACT explicitly cite this framework in their LinkedIn
profiles. Section 4 describes the methodoloy adopted to perform this study, as
well as its results.

• We build another public dataset containing information of 2,284 developers, and
evaluated the effectiveness of three machine learning strategies in classifying the
competence of software developers in six technical roles: Backend, Frontend,
FullStack, Mobile, DataScience, and DevOps. These models presented compe-
titive results with respect to precision (0.88) and AUC (0.89) when identifying all
six roles. We describe this work in more detail in Section 5.

3. What Skills do IT Companies look for in New Developers?

There is a growing demand for information on how companies deal with the skills they
need when looking for new developers. To find out what are these skills, we reported
in this initial study an analysis of more than 20,000 job opportunities available in Stack
Overflow Jobs portal, a platform that allows companies to publish new opportunities for
IT professionals.

We decided to analyze job opportunities because they represent a declaration of
expectations between employers and employees. A job opportunity describes what a
company expects from its candidates, as well as what the candidates should expect from
the company. For this, a job opportunity includes important company details, such as
mission, culture, benefits, etc. At the same time, the company should provide enough
details so candidates can decide whether they are qualified or not for the position. In other
words, job opportunities describe hard and soft skills required by the disclosed position.
Therefore, in this investigation, we analyze both hard and soft skills required by IT job
opportunities.

In particular, we leveraged the main characteristics of 14 IT roles, such as Bac-
kend, Frontend, and Mobile developers. We also analyzed which soft skills are mostly
requested by IT companies when selecting new candidates. Lastly, we discussed the im-
plications of this analysis for both recruiters and developers. Due to space constraints, we
report in this manuscript only the results from our hard and soft skills analysis. In case
the reader is interested in the data collection process adopted in this work, please refer to
the Chapter 3 of the thesis.

Analyzing Hard Skills. As a key result of this first study, we were able to reveal the
hard skills demanded for 14 developers roles, as illustrated in Figure 1. The figure shows
a heatmap with the distribution of high-level hard skills (rows) per developer roles (co-
lumns). With this heatmap, we intend to provide a technology-agnostic analysis, i.e., one
that focuses on high-level hard skills (e.g., Languages) instead of current technologies
(e.g., Java). In this way, we also intend to increase the validity of our results against
technological changes.
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Figura 1. Hard skills required for developers roles.
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Figura 2. Soft skills word cloud.

Primarily, Languages is the most required hard skill for 9 out of 14 technical
roles analyzed. Furthermore, the concentration of Languages is higher for development-
based roles, e.g., MOBILEDEVELOPER (39.3%), GAMEDEVELOPER (50.7%), FULLS-
TACKDEVELOPER (43.5%), and FRONTENDDEVELOPER (49.5%). These characteristics
make Languages the only skills that are significantly mentioned in all roles. Likewise,
development-based roles also demand skills on Libs & Frameworks, which generally have
more than 20% of participation in this group.

Analyzing Soft Skills. Figure 2 depicts the word cloud for the top-100 most frequent
terms. We can observe that communication plays a central role among the most required
soft skills. Indeed, 32% ± 5% of the posts in our population (i.e., about one in three
posts) mention this skill. Collaboration-based skills also feature a special position in this
ranking. For instance, the word “team” appears in at least 22% of the jobs posts (i.e.,
27%± 5%). Lastly, some companies also require experience in problem-solving skills, as
the words “analytical”, “problem solving”, or “deliver” are present in at least one out of
ten posts (i.e., 15%± 5%).

Takeaways: Languages skills are largely required for every IT position. Further-
more, experience in Libs & Frameworks are frequently mentioned in development-



based ones. As for soft skills, communication, collaboration, and problem-solving
skills are considered the most important ones.

4. Identifying Experts in Software Libraries and Frameworks

Modern software development heavily depends on libraries and frameworks to increase
productivity and reduce time-to-market [Ruiz et al. 2014, Sawant and Bacchelli 2017].
In this context, identifying experts in popular libraries and frameworks—for exam-
ple, among the members of global open-source software development platforms, like
GitHub—has a practical value. For example, open-source project managers can use this
information to search for potential new contributors to their systems. Private companies
can also benefit from this information before hiring developers for their projects, as ob-
served in Section 3.

Previous work on software expertise focused on identifying experts for internal
parts of a software project, but not on external components, such as libraries and fra-
meworks [Mockus and Herbsleb 2002, Fritz et al. 2014, Schuler and Zimmermann 2008,
Da Silva et al. 2015]. By contrast, in this thesis we decided to extend existing expertise
identification approaches to the context of third-party software components. Our key hy-
pothesis was that when maintaining a piece of code, developers also gain expertise on
the frameworks and libraries used by its implementation. Based on this conjecture, we
answered two research questions: (RQ.1) How accurate are machine learning classifiers
in identifying library experts? and (RQ.2) Which features best distinguish experts in the
studied libraries?

Methodology: To conduct this work, we focused on three popular JavaScript libraries:
FACEBOOK/REACT (for building enriched Web interfaces), MONGODB/NODE-MONGODB
(for accessing MongoDB databases), and SOCKETIO/SOCKET.IO (for real-time commu-
nication). Once these libraries were selected, we collected low-level activity data from
developers who have contributed to their popular clients in GitHub.5 We then processed
this data and extracted 13 features covering three dimensions of changes performed by
them: Volume, Frequency, and Breadth. These features include the number of commits
on files that import each library, the period they started working with the aforementio-
ned libraries, and the number of client projects a developer has contributed to. Finally,
we built the ground-truth for this work by surveying a sample of 575 GitHub developers,
where we asked them to declare their expertise level in the studied libraries.

In this manuscript, we focus at reporting the results obtained in this work. We
kindly ask the reader to check out Chapter 4 of the thesis for more details about the
methodology and data collections adopted.

(RQ.1) How accurate are machine learning classifiers in identifying library experts?
First we executed the machine learning classifiers exclusively for REACT, considering
five levels of expertise: Novice 1, Novice 2, Intermediate, Expert 1, and Expert 2.6 We
then executed the same classifiers for three levels of expertise (Novice, Intermediate, and
Expert), this time considering all three libraries.

5A project is popular if it was among the top-10K most popular ones when the data was retrieved.
6SOCKET.IO and NODE-MONGODB were not included since their dataset are not sufficient for this setup.



Tabela 1. Clustering results (cluster 1 has the highest % of experts)

Cluster % Novices % Intermediate % Experts # Devs

FACEBOOK/REACT

C1 0.03 0.23 0.74 97
C2 0.12 0.28 0.60 129
C3 0.18 0.27 0.55 192

MONGODB/NODE-MONGODB

C1 0.12 0.24 0.65 17
C2 0.21 0.43 0.36 14
C3 0.35 0.35 0.30 37

SOCKETIO/SOCKET.IO

C1 0.00 0.25 0.75 4
C2 0.29 0.36 0.36 28
C3 0.33 0.33 0.33 15
C4 0.50 0.40 0.10 30
C5 0.67 0.33 0.00 12

In the five-classes scenario, the results are not good for almost all performance
metrics and classifiers. For example, the machine learning classifiers scored a maximal
F-measure of 0.24 for REACT. The results improved in a three-classes scenario, though.
For instance, precision results were greater for experts than for novices, both for REACT
(0.65 vs 0.14) and NODE-MONGODB (0.61 vs 0.60), while SOCKET.IO has had the highest
precision for novices (0.52). F-measure was 0.36 (REACT), 0.56 (NODE-MONGODB), and
0.42 (SOCKET.IO). By contrast, the baseline results for F-measure were 0.25 (REACT)
and 0.19 (NODE-MONGODB and SOCKET.IO).

(RQ.2) Which features best distinguish experts in the studied libraries? Table 1
shows the percentage of novices (scores 1–2), intermediate (score 3), and experts (sco-
res 4–5) in the clusters of each library. In FACEBOOK/REACT, we found a cluster where
74% of the developers are experts in the framework; in MONGODB/NODE-MONGODB
and SOCKETIO/SOCKET.IO we found clusters with 65% and 75% of experts, respecti-
vely. More importantly, such clusters also presented the lowest rate of novice developers,
with 3%, 12% and 0% for FACEBOOK/REACT, MONGODB/NODE-MONGODB, and SOC-
KETIO/SOCKET.IO.

Triangulation with LinkedIn Profiles: To provide further evidence on the value of the
clustering procedure described previously, we triangulated the results obtained for REACT
developers with the expertise information available on LinkedIn. First, we mapped each
REACT developer who did not answer our survey—and therefore was not considered at
all in the proposed method—to one of the clusters produced for REACT, as discussed
before. We also conducted this study for the other libraries, but they were omitted due
to space constraints. After that, we manually searched for the Linkedin page of these
developers, looking for their names and possibly e-mails on Linkedin. We were able to
find the Linkedin profile of 160 developers. Finally, we manually examined these profiles,
searching for clues of expertise on REACT. As a result, 115 developers (72%) explicitly



refer to REACT on their Linkedin profile. Altogether, this triangulation with Linkedin
shows that the proposed clustering-based method was able in most cases to find several
GitHub developers with evidence of having experience in REACT.

Takeaways: When it comes to identify developers expertise level, we achieve promi-
sing results by adopting unsupervised analysis. For all three libraries, we were able
to find clusters that are both dominated by experts and have the lowest novices rate.

5. Identifying Technical Roles of Software Developers
As observed in Section 3, IT companies organize their development teams accordingly to
the technologies the developers master, e.g., frontend, backend, mobile, and others. For
instance, frontend developers are specialized on the application’s interface, as opposed to
backend who are responsible for core features. In this context, we currently lack appro-
aches for inferring developers’ technical roles. Therefore, our key goal in this study is
to identify the technical roles played by developers using information available in open
source platforms. To perform this investigation, we assume the following hypothesis:
the technologies that developers master define their technical roles. For instance, data
scientists might have a deeper understanding of data analysis tools. Likewise, frontend
developers should master Web APIs concepts, such as REST, AJAX, etc.

Hence, we elaborated four research questions to be answered. In this manuscript,
we focus in two of them: (RQ.1) How accurate are machine learning classifiers on iden-
tifying developers’ technical roles? and (RQ.2) What are the most relevant features to
distinguish technical roles?

Methodology: To answer these questions, we built a ground-truth which relied exclusi-
vely on Stack Overflow’s data, since this data would not be used further in our study. Spe-
cifically, we selected from Stack Overflow API users who provided a link to their GitHub
pages, and then used the information of their Stack Overflow profiles to label them in
at least one of the five technical roles: BACKEND, FRONTEND, DEVOPS, DATASCI-
ENCE, and MOBILE. We ended up with a ground truth with 1,662 developers containing
2,022 role assignments. Afterwards, we collected the GitHub data for each developer. To
provide a code agnostic solution (and therefore analyze repositories in multiple program-
ming languages), we collected mostly textual data about the developers’ profiles and the
projects they own. More specifically, we selected 1,471 features belonging to five high-
level categories: Projects’ Dependencies (798), Programming Languages (217), Projects’
Descriptions (169), Projects’ Names (155), Short Bio (69), and Projects’ Topics (63). As
usual, the reader can check all the details of this work in the Chapter 5 of the thesis.

(RQ.1) How accurate are machine learning classifiers on identifying developers’ te-
chnical roles? The Random Forest classifier presented the best results overall, scoring
0.77 for precision and 0.71 for AUC. Considering the technical roles individually, the
classifier presented high precision rates—i.e., above 0.7—for 4 out of 5 roles: DATASCI-
ENCE (0.86), MOBILE (0.78), FRONTEND (0.77) and DEVOPS (0.70). On the other hand,
it scored poor results especially for BACKEND role (recall and F1 equal to 0.12 and 0.18,
respectively).

(RQ.2) What are the most relevant features to distinguish technical roles? Figure
3 shows the top-10 most relevant features by technical role. Features associated with
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Figura 3. Most relevant features for each technical role.

programming languages are largely predominant for all five roles, representing 38 out of
50 features. When we analyze the results for each role, we see that DATASCIENCE has
the highest relevant features, as six features stand out: scientist (Bio), Jupyter Notebook
(total), Jupyter Notebook (rate), data (Bio), R (total), and R (rate). In other roles, fewer
features presented higher importance: devops (Bio) for DEVOPS, mobile (Bio) for MO-
BILE, and JavaScript (author) for FRONTEND. Particularly, no feature stands out from
the others for BACKEND.

Takeaways: We showed that it is possible to identify major technical roles from
developers given their publicly avaiable information in SCPs. For instance, we achi-
eved remarkable precision scores when identifying DATASCIENCE (0.86), MOBILE
(0.78), and FRONTEND (0.77) professionals. Programming languages-based features
demonstrated to be the most relevant ones when identifying developers in all roles.

6. Related Work

When it comes to the state-of-the-art concerning expertise in software development, the
existing literature unveils developers’ abilities in several scenarios. Some studies focus
on discerning developers’ abilities according to a particular domain they are involved.
Da Silva et al. [Da Silva et al. 2015] and Honsel et al. [Honsel et al. 2016] proposed to
identify experts for source code elements—such as methods, classes, and packages—of
specific projects. Constantinou and Kapitsaki [Constantinou and Kapitsaki 2017] over-
came with a model to detect the contribution roles of developers in open source projects,
e.g., bug fixer, triager, core developer, etc. Avelino et al. [Avelino et al. 2019] used the
truck-factor metric to identify core developers—those who have more knowledge of the
system’s structure—in popular projects. However, these approaches are intrinsically li-



mited to the scope of a specific project, i.e., they are not centered on the general expertise
of developers.

Other works aimed at leveraging developers’ skills independently of the context
they are working on. Teyton et al. [Teyton et al. 2013] performed a syntactical analysis
over developers’ commits to measure their expertise in third-party libraries. Likewise,
Saxena and Pedanekar [Saxena and Pedanekar 2017] instrumented the profile of GitHub
users by annotating them with Stack Overflow tags. In both cases, relying on abstract
syntax trees to obtain expertise information may reduce the performance of the solu-
tion in a larger dataset. Oliveira et al. [Oliveira et al. 2019] relied on more simplified
information—activity-based features such as the number of commits—to detect experts
in Java libraries, but restricted the expertise granularity level and the universe of develo-
pers considered in their analysis.

Notwithstanding the acknowledged effort in identifying the abilities of software
developers, the aforementioned studies do not completely meet the demands of industry
players., i.e., automatically leverage skills profiles that—based on developers’ general ac-
tivity in SCPs like GitHub—can assist recruiters and employers during the hiring process.

7. Final Remarks

In recent years, developers have been playing an increasingly preponderant role in the
software development process. Indeed, IT-based companies are giving importance to hi-
ring new professionals at unprecedented levels. When it comes to the state-of-art in this
field, most of them investigate developers’ expertise in particular open-source projects.
By contrast, the industry is more interested in obtaining software developers’ informa-
tion from a more general perspective. We summarized in this manuscript the efforts to
understand which abilities do these companies look for in their collaborators, as well as
investigated methods to automatically identify such professionals. For this, we performed
a set of three major studies where we extensively analyzed data-driven methods and te-
chniques to leverage software developers’ profiles, considering their activity in SCPs. In
our view, the results of these studies may impact software engineering researchers and
practitioners, either by better understanding the most valued abilities in the eyes of IT
industry, or by laying out the strengths and limitations of data-oriented techniques in this
context.

The research of this thesis generated three publications in Qualis A1 venues, two
of them in full format. Since 2019—when the first paper was publicly released—our
publications have been referred in more than 40 works. Besides, one of these works have
organically featured in Reddit’s JavaScript community, gathering attention of its users; so
far this paper have been read by more than 1,7K people. We also made publicly available
the datasets we used in all three studies as a self-contained replication package, which
have been used as baseline for studies in this area. Altogether, these datasets have been
downloaded more than 11K times. The reader can find the URL to each one in the thesis.
Lastly, it is worth mention that part of this research was conducted in a partnership with
researchers from Concordia University (Canada), which is still in progress and resulting
in new joint works.
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