
TechSpaces: Identifying and Clustering Popular Programming
Technologies

ABSTRACT
Background: Software ecosystems are becoming increasingly com-
plex and large. Therefore, discovering and selecting the right li-
braries and frameworks for use in a project is becoming a challeng-
ing task. Existing commercial services that support this task rely on
annual surveys with developers to provide a landscape of the most
popular technologies in a given ecosystem. Aims: In this paper, we
outline a semi-automated technique for this purpose, which we call
TechSpaces. Method: Our proposal relies on community detection
and well-known NLP algorithms to automatically extract groups of
related technologies, using as primary data source tags associated
with Stack Overflow questions. Results:We describe the first re-
sults of using our technique to identify popular and inter-related
technologies in five programming language ecosystems. Evalua-
tion: We compare our technique against two other tools in the
literature. Conclusions: The proposed technique shows potential
to assist IT professionals in taking technical decisions supported by
crowd knowledge. However, further improvements are needed to
make it a viable choice. For instance, we envision the usage of other
data sources (e.g., GitHub andWikipedia) can contribute to improve
the accuracy and expressiveness of our graph representations.

KEYWORDS
Programming technologies, APIs, Community detection algorithms,
Mining software repositories.

ACM Reference Format:
. 2022. TechSpaces: Identifying and Clustering Popular Programming Tech-
nologies. In Proceedings of 16th Brazilian Symposium on Software Components
Architectures and Reuse (SBCARS ’22). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Modern software development heavily depends on third-party
APIs [5, 6, 13]. Nowadays, even simple apps use a variety of li-
braries and frameworks for front-end interaction, communication,
security, persistence, basic data structures manipulation, among
others [8]. For this reason, we claim that—without exaggeration—
finding and selecting the right libraries and frameworks is a key
decision in the path for delivering high-quality software with the
right time to marketing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBCARS ’22, October 03-07, 2022, Uberlândia, Brazil
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

However, it is not trivial to discover and select the tools and
libraries for using in a project. For example, npm—the widely pop-
ular package repository for JavaScript—hosts more than 1.3 million
packages in April 2020.

In fact, in recent years commercial services appeared to provide
curated data about the most popular APIs in a given ecosystem. One
example is the “State of JS” site whose goal is to "identify current
and upcoming trends in the javascript ecosystem”.1 Particularly, this
site provides information on the most common javascript libraries
for front-end and back-end development, communication, testing,
building, and mobile development. However, this data is obtained
by runnnig surveys with the javascript community. Therefore, each
year, a new survey is conducted to update the data and collect new
trends. This strategy requires a significant effort and consequently
it is not a surprise that in 2021 the service maintainers were not
able to send the survey, which is happening only in 2022.2

In this paper, we outline the first implementation of a semi-
automated technique to identify and cluster popular APIs in a
given software ecosystem. The proposed technique has two key
characteristics. First, it relies on the co-occurrence between Stack
Overflow’s tags to group the closely related ones into technology
spaces. This abstraction aims to provide a comprehensive overview
of the technologies adopted in a given ecosystem and to allow the
users to choose the best ones according to their needs. Second,
by using well-known NLP techniques, our technique annotates
the selected technologies with higher-level alternative categories,
so users can better understand the main purpose when adopting
each technology. Finally, we use our technique to identify popular
technologies in five popular programming languages ecosystems:
java, python, javascript, c# and php.

The remainder of this paper is structured as follows. In Section 2,
we outline the proposed technique. In Section 3, we report the first
results of using the proposed technique in five popular ecosystems.
In Section 4 we list usage scenarios and in Section 5 we discuss
the evaluation. Section 6, discusses related work and Section 7
concludes the paper.

2 PROPOSED SOLUTION
The approach proposed in this paper can be used with any tech-
nology or programming language that has tags in Stack Overflow.
However, to make our presentation more concrete and easy to
follow, in this section we rely on examples from five major pro-
gramming languages, as listed in the Introduction. A more detailed
view of our results is presented in Section 3.

Figure 1 depicts the steps used to leverage our proposed solution.
As we can observe, our approach is divided into three key steps.
We start by collecting the co-occurrence information about Stack
Overflow’s tags. In parallel, we pre-process the textual description
of each tag (known as excerpt) in order to extract their respective

1https://2020.stateofjs.com/en-US/technologies/
2https://2021.stateofjs.com/en-US/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SBCARS ’22, October 03-07, 2022, Uberlândia, Brazil

Stack
Overflow

dump

Tags collection

Top-100
Most

popular
categories

Tags co-occurrences

java sql 513

python numpy 250

...

Tags Collection

Tags Categorization

Excerpts
collection

Nouns' extraction

Stack Exchange

Tags categories

java lang.

numpy library

... ...

Community detection

Tags
dataset

Community
detection

Tech Spaces

Figure 1: Proposed Solution.

technology category. The resulting data of the aforementioned
processes are then merged and forwarded to the last step, where we
rely on a community detection algorithm to cluster semantically
related tags based on their co-occurrences to, at last, generate the
techspaces. These steps are described in detail in the remaining of
this section.

2.1 Tags Collection
Our approach depends on the co-occurrence among Stack Overflow
tags to build up the techspaces. Therefore, we first gathered infor-
mation about the co-occurrence relationship of all existing tags on
Stack Overflow. For this, we downloaded the Stack Overflow dump
provided by Stack Exchange on January, 20223 and generated a
three-columns table as follows. The first two columns refer to tags
that co-occur in Stack Overflow; this co-occurrence is considered
whenever the two tags are used in the same question. Finally, the
third column stores the number of co-occurrences of each tuple,
which is used later to map the techspaces. In total, we identified
196,290,608 co-occurrences among 53,949,887 questions.

2.2 Tags Categorization
Along with the tags collection method described earlier, we imple-
mented a procedure to automatically classify the Stack Overflow
tags into higher level categories, such as languages, libraries, frame-
works, etc. Such categorization might enrich our techspaces as it
provides additional information about which kind of technology is
frequently used in the same context with respect to software de-
velopment. For instance, javascript and python have many libraries
and frameworks on their techspaces, while java has more tools and
toolkits.

To provide this classification, we first need a data source from
where we can mine these high-level categories for each tag. In
this work, we rely on the excerpts provided by the Stack Overflow
for their tags. Basically, an excerpt is a short textual description
maintained by the Stack Overflow community that explains what an
specific tag is. Figure 2 presents an excerpt example, for the spring
tag, which was then categorized as a framework by our approach.
3https://archive.org/details/stackexchange

Figure 2: Excerpt for the spring tag.

Hence, we started by collecting all excerpts available in the Stack
Overflow platform. This time, we gathered the data from the Stack
Exchange Data Explorer4 on Jan 10th, 2022. In total, we leveraged
excerpts for 41,589 tags.

Next, we applied the DepparseProcessor from StanfordNLP to
extract the category for each tag [11]. This algorithm works by
determining the syntactic head of each word in a sentence and the
dependency relation between the words.

Similar to other works [3, 9], we extract the first sentence from
the excerpt as it generally contains the definition of the tag, and
then apply the aforementioned NLP algorithm. Figure 3 illustrates
this procedure for the excerpt associated to the spring tag. Each
node represents one word of the sentence and the arrows establish
a dependency relation, which type is shown on the side.

Despite having valid excerpts, our approach was not able to
find categories for some tags, such as angular, shell, and android-
studio. After investigated further, we noted that the excerpt of
these tags does not comply with the structure expected by our
NLP toolkit. For instance, Angular contains the following excerpt:
“Questions about Angular (not to be confused with AngularJS), the
web framework from Google”. In this case, we failed to identify a
noun representing a category for this tag (framework). Therefore,
we opted for removing from our list all tags without any category
identified by StanfordNLP. As a result, we classified 22,172 tags
distributed in 2,109 high-level categories.

4https://data.stackexchange.com/

https://archive.org/details/stackexchange

TechSpaces: Identifying and Clustering Popular Programming Technologies SBCARS ’22, October 03-07, 2022, Uberlândia, Brazil

Figure 3: Extracting the category from spring excerpt using DepparseProcessor algorithm.

2.3 Community Detection
Ultimately, the techspaces proposed in this work should provide
a roadmap with the major technologies adopted in each space, so
developers can be aware and chose among them to implement the
intended software project accordingly. In other words, these groups
should be compact and must be formed mostly by essential tech-
nologies. In light of this, we performed another three-step filtering
process. First, we ranked the categories based on their frequency,
and then selected the top-100 most referenced ones. Next, the first
author manually analyzed each of them, discarding categories not
related to software technologies, such as name, reference, sequence,
etc. Finally, we maintained the tags that belongs to one of the re-
maining categories, removing the other ones from the dataset. Our
dataset ended up with 6,076 tags, associated with 14 categories.

Afterwards, we submitted this dataset to the Louvain method
for community detection, which is an algorithm that identifies
community structures from large networks [1]. Essentially, this
algorithm uses a heuristic that computes the partition of the graph
nodes which maximizes modularity, using a scale value between
−0.5 (non-modular clustering) and 1.0 (fully modular clustering).
The higher the value, more dense are the edges inside communities
in comparison to edges outside their own communities.

For example, if java has a large number of co-occurrences with
spring and swing tags, they will be placed in the same commu-
nity, even if spring and swing do not have many co-occurrences
themselves. Furthermore, although java has a large number of co-
occurrences with python, they will stay in separate communities,
since the other tags in python’s community do not have a strong
connection with java.

The resulting communities represent groups of technologies that
are frequently mentioned together in Stack Overflow’s questions,
which we named as techspaces. Therefore, they also tend to be
used together during software development tasks. At the end of
this procedure, our approach identified five techspaces.

3 RESULTS
We organized the technology spaces as a tree layout, where each
node represent one of the top-15 relevant technologies and their
respective categories. We also colored each node accordingly to
their category, keeping closely related categories with similar colors,
e.g., framework and library; these technologies were also gathered
side-by-side in order to improve the techspace visualization. In
the following paragraphs we briefly describe the results for five
languages: java, python, javascript, c# and php.

3.1 Java TechSpace
Figure 4 shows java’s techspace, with their related frameworks,
languages, tools and so on.

As we can see, the categories are well balanced in this ecosys-
tem. Tool is the most popular one (three technologies), followed by
framework, language, system, and toolkit (two, each). Lastly, three
categories appear with one occurrence each: ide, platform, and
component.

With respect to the technologies itself, we observe that most
of them are important for different situations when implementing
enterprise applications. For instance, ant and maven are widely
adopted for dependency management in large scale projects. spring
and jsf feature among the most popular web frameworks for Java;
the same apply to hibernate for database ORM and eclipse for IDEs.

SBCARS ’22, October 03-07, 2022, Uberlândia, Brazil

Figure 4: Java’s techspace

Finally, scala and groovy are two programming languages created
to address some limitations of the Java language, such as advanced
type systems, elements of functional programming, closures, etc.
Although both are distinct languages, with possibly their own and
smaller ecosystems, we claim it is important for Java developers to
known that they can easily integrate their programs with software
written in these languages.

3.2 Python TechSpace
Figure 5 shows python techspace. Differently from java, the python
hasmore technologies used as third-party components. For instance,
library, framework, and extension contain eight out of the top-15
most relevant ones.

Figure 5: Python’s techspace

Furthermore, these technologies include frameworks and libraries
for web-development (django and lxml), computer vision (opencv)
and science and statistics tasks (numpy, scipy, matplotlib, and nltk);

it also includes two languages (matlab and prolog), and one tech-
nology for system (wolfram-mathematica), tool (virtualenv), toolkit
(sqlalchemy), and database (csv). Interestingly, the majority of such
technologies are largely used in scientific computing, which re-
inforce the role python is playing recently in software develop-
ment [8, 10, 12].

3.3 JavaScript TechSpace
Similar to Python’s, JavaScript techspace (Figure 6) has several tech-
nologies used as third-party components, with library, framework,
and extension containing ten out of the top-15 most relevant ones.

It is also interesting to observe that these technologies are mostly
for web-development, so as css, html and xul, categorized as lan-
guages. Thereby, the generated techspace confirms the most com-
mon use case of the language.

In comparison with “State of JS” website, even analyzing only the
technologies usage data, the proposed techspace reflects a scenario
ofmorewell-established and longer-term technologies, which filters
the enthusiasm of new trends from survey participants.

Even so, the obtained techspace still lacks the presence of one
of the most used libraries in the JavaScript ecosystem: react. This
is explained by the library name itself. Since “react” is an English
verb, the proposed NLP solution fails to correctly categorize it. In
future versions of our work, we plan to handle this problem, for
example, by considered semantically enriched data sources, such
as the Wikipedia.

Figure 6: JavaScript’s techspace

3.4 C# TechSpace
Figure 7 showsC#’s techspace, with itsmain frameworks, languages,
platforms and so on. This space has a balanced number of different
categories, with the most predominant being languages, with four
members (razor, F#, xaml and vb.net). Subsequently, we have frame-
works, platforms, components and system with three, two, two and
two members, respectively. Lastly, the subsystem and environment
appears with one member, each.

TechSpaces: Identifying and Clustering Popular Programming Technologies SBCARS ’22, October 03-07, 2022, Uberlândia, Brazil

Figure 7: C#’s techspace

Regarding the technologies themselves, the presence ofMicrosoft
technologies is notable, which is expected given the history of
the language. For instance, we identified several technologies for
different purposes used in C#’s applications context, such as .net’s
family frameworks, visual-studio-2010 development environment,
azure cloud platforms and f# and vb.net languages.

3.5 PHP TechSpace
Lastly, Figure 8 shows php’s techspace. It majorly has frameworks
(four terms), systems (four terms) and platforms (three terms), al-
though it also contains a tool, a language and two extensions.

Figure 8: PHP’s techspace

The main difference between php’s TechSpace in comparison
to the other ones is the presence of a series of SQL-related and

web-based terms, such as mysql, sql-server, postgresql and content-
management-system. The reason is probably due to historical as-
pects of the evolution of the language and the web, since php was
the most adopted language for the web for a long time.

4 USAGE SCENARIOS
TechSpaces can help IT professionals when taking technical deci-
sions as it shows the most relevant technologies for each ecosystem,
based on information provided by the software development com-
munity (currently, Stack Overflow users). Therefore, our proposed
technique might play an important role as the technological land-
scape is dynamic and frequently changes overtime [7]. We illustrate
some of these typical usage scenarios below:

Tech Stack Adoption: Our technique relies on the number of
Stack Overflow’s posts to leverage each technology space. In other
words, the graph generated by our technique emphasizes popu-
lar technologies among the software development ecosystem. In
this scenario, TechSpaces can assist developers by helping them to
choose a technology stack for a new software project, or even by
providing alternative or more modern software components for a
predefined stack.

Technology Roadmaps: Currently, our technique’s structure does
not consider the technologies usage timeline. But once implemented,
wemight be able to visualize not only popular technologies, but also
trending and outdated ones. In this context, TechSpaces can comple-
ment roadmap tools—e.g., Thought Works Technology Radar5—by
relying on crowd knowledge to assist IT professionals in prospect-
ing trending technologies, and in discarding outdated ones.

Career Transition: Finally, TechSpaces can also help IT profes-
sionals who are interested in changing the focus of their careers.
For instance, a backend developer who is interested in becoming
fullstack can use the JavaScript techspace as a reference for the
most important technologies she must learn to become proficient
in frontend, such as html, css, jquery, etc. Likewise, a professional
who is interested in working as a data scientist can study the tech-
nologies present in Python techspace (e.g., numpy, scipy,matplotlib,
and nltk, etc).

5 EVALUATION
We evaluate the TechSpace approach considering two major as-
pects: the presence of important technologies in the ecosystem and
the categorization of these technologies. For this, we compare our
technique against two other tools in the literature: TechGraph [2],
which is a graphical representation created with association rules
of a technology landscape from Stack Overflow question tags; and
Witt [9], an automated approach for the categorization of software
technologies. Their differences are reported in the remaining of
this section.

5.1 Comparison with TechGraph
5.1.1 TechGraph Overview.

TechGraph relies on association rule mining and community de-
tection to mine the technology landscape from Stack Overflow [2].

5https://www.thoughtworks.com/radar

https://www.thoughtworks.com/radar

SBCARS ’22, October 03-07, 2022, Uberlândia, Brazil

It is noteworthy that, in our visualization, the category of each
technology is immediately presented to the user. Additionally, Tech-
Graph categorizes technologies into just three types: software li-
brary, programming language or general concept, while our so-
lution has no restrictions on high-level categories. TechGraph vi-
sualizations are also grouped and colored by the association rule,
whereas our tool does this through the categories of each technol-
ogy.

Figure 9: JavaScript’s TechGraph

Furthermore, TechGraph allows estimating the importance of a
technology to an ecosystem by the size of the node in the graph,
while our solution only shows the 15 most important technologies,
without a defined hierarchy. Although the first approach brings
a more detailed level of information, sometimes the generated vi-
sualization can be excessively low-level, making it confusing or
even difficult to read. For instance, Figure 9 depicts javascript’s
TechGraph. The subgraph in blue presents html related tags. As we
can observe, some of them are excessively low-level, such as dom,
forms and frame.

5.1.2 Results.

We compare our approach to theirs by analyzing the graph ob-
tained for the same technologies. Moreover, from the obtained
TechGraphs, we select the most important nodes and compare their
categorization with ours.

Java: Considering java’s TechGraph, we see four main technologies
and their subsequent links: android, spring, eclipse and swing. With
the exception of the last one, which is categorized as a software
library, all other technologies are defined as general concept. On
the other hand, our solution addresses these four technologies more
specifically: android is a system, spring is a framework, eclipse is an
ide and swing is a toolkit.

Figure 10: JavaScript’s Witt result

Python: In TechGraph’s python ecosystem, the most prominent
technologies are django, numpy, pandas, and matplotlib. The first
two are categorized as general concepts, while the last two are seen
as software libraries. In our solution, django appears as a framework,
numpy as an extension, matplotlib as a library and pandas does not
appear as one of the top 15 technologies (although it is categorized
as a library by the NLP algorithm).
JavaScript: In the javascript ecosystem, TechGraph’s three main
technologies are jquery, html, and css. The first is categorized as
a software library, the others two are programming languages.
Likewise, our solution includes the three technologies among the
top 15 and also presents them as library and language.
C#: In Techgraph’s C# ecosystem, we see four main technologies:
asp.net, wpf, asp.net-mvc and .net. While wpf is categorized as a
software library, all other technologies are identified as general
concepts. In our solution, wpf is categorized as a subsystem and the
other three are classified as frameworks.
PHP: Finally, in the php TechGraph’s ecosystem, the main cate-
gories are mysql, javascript, html and jquery. The first one is cate-
gorized as a general concept, javascript and html are programming
languages and jquery is a software library.

In our approach, mysql is categorized as a system. More impor-
tant, javascript, html and jquery appears in javascript’s TechSpace
itself; instead of php’s ones.

TechSpaces: Identifying and Clustering Popular Programming Technologies SBCARS ’22, October 03-07, 2022, Uberlândia, Brazil

Figure 11: Java’s ecosystemWitt result.

5.2 Witt
5.2.1 Witt Overview.

Witt uses Stack Overflow and Wikipedia data to categorize soft-
ware technologies using data mining and NLP [9]. The Witt ap-
proach to grouping technologies is very different from ours, since it
is based on the categories of the presented term itself. For instance,
Figure 10 presents categories generated by Witt for the javascript
term. As we can see, it is categorized into main categories and
most of these have subcategories. In general, the tags categorizes
aspects of the language itself, such as weakly-typed, interpreted and
high-level. Similarly, java, python, C#, and php present equivalent
results, e.g., they are all considered programming-languages. While
Witt’s approach can be quite interesting to show to the user tech-
nologies with a similar purpose, it is less friendly when it comes to
leveraging the ecosystem of a specific technology.

As categorization, Witt works with an expanded version of the
hypernym discovery problem. This means that each technology
can be categorized in many different ways, and these categories
may contain even more specific subgroups. So, as Figure 10 depicts,
javascript is a programming-language. More specifically, javascript
is an interpreted programming-language. Although the technologies
have more specific and hierarchical categorizations, some results
do not match what was expected. For example, swing is not a pro-
gramming language, despites being categorized that way.

Although Witt’s categorization approach is very interesting to
answer statements such as "show me all the interpreted program-
ming languages", this structure does not fit our general goal with
TechSpaces.

5.2.2 Results.

We compare our approach to Witt considering the categories
presented for the same technologies analyzed in the previous sub-
section, i.e., the most important nodes of TechGraph.

Figure 11 shows Witt’s results for java. As we can observe, Witt
leverages several categories, some of them may be considered con-
troversial, though. For instance, swing is categorized as a toolkit
(like ours), but also as programming-language and language. The
same happens with spring, which is classified as a framework (like
ours), but also as inversion, container, and software.

In other words, Witt leverages many categories representing
marginal characteristics of the term, such as oo for java, open-
source for eclipse, servlet for spring, etc. This aspect limits its
application in our context, since the proposed approach depends
on categories capable of defining the type of the technology. As the
results for the other languages have a very similar structure, we
will only show the results for java.

6 RELATEDWORK
In this work, we proposed a method to classify Stack Overflow tags
into high-level technologies and to group them into technology
spaces. In this section, we describe similar studies that contribute
either by extending current tags vocabulary or by proposing tech-
niques to group semantically related tags.

Zhu et. al. propose a machine learning method to create an hier-
archical taxonomy for existing Stack Overflow tags [14]. Similarly
to our approach, they use information on tags co-occurrence to

SBCARS ’22, October 03-07, 2022, Uberlândia, Brazil

train semi-supervised models, but focused at identifying hypernym-
hypernym relations. Chen et. al. propose another strategy to struc-
ture Stack Overflow tags [4]. The authors extract topics from the
text of questions and answers and associate themwith tags declared
in each one. Once this map is completed, they use a topic modeling
approach to generate a hierarchy of concepts. The taxonomy pro-
posed by both works assume a topological hierarchy, i.e., a concept
encompasses or is encompassed by another. Differently, we pro-
pose to associate concepts based on their co-occurrence without
any hierarchical assumption. We claim this is a simple and easy to
understand model. In fact, existing sites, such as The State of JS,
also provide a flat organization of programming technologies.

Nassif et. al. focus their efforts towards automatically categoriz-
ing software technologies terms into high-level categories [9]. For
this, they implemented a tool that, based on the content provided
by Wikipedia articles and well-known NLP techniques, extract and
link such categories with software technologies. Similarly, we also
rely on NLP techniques to generate high-level categories, using
the excerpts provided by Stack Overflow. However, the key ad-
vantage of our solution is that we leverage the tags available on
Stack Overflow, which are carefully curated by the forum users and
moderators.

TechGraph is an approach and tool for inferring technology clus-
ters using data extracted from Stack Overflow question tags [2].
The tool relies on association rule mining and community detection
algorithms. As a result, a so-called Technology Associative Network
(TAN) is generated, which is essentially a graph whose nodes are
technologies and the edges denote associations between technolo-
gies (i.e., they frequently appear together as tags in Stack Overflow
questions). In addition to the community detection technique, we
extended our methodology by adding supervised steps where we
instrumented the technologies extracted from Stack Overflow in
order to keep up with the most relevant ones in each ecosystem.

A closely related tool was proposed by the same authors to
recommend similar libraries, called SimilarTech [3]. To make this
possible, the authors merge tags in the same question into one sen-
tence, and then apply well-known NLP and clustering algorithms to
match equivalent libraries. Instead, our technique allows us to iden-
tify similar technologies in terms of their purpose in the software
development process.

7 CONCLUSIONS
In this paper, we proposed a semi-automated approach that relies
on NLP and on community detection algorithms to derive clusters
of popular and related technologies in programming languages
ecosystems, which we called techspaces. We used this approach to
retrieve the techspaces of five major programming languages.

We also evaluated our approach against two other techniques by
comparing the presence of important technologies in the TechSpace
and the categorization of these technologies. The results show
that our approach is capable of covering most of the important
technologies, as well as providing a concise categorization suited
to our context.

Our future work agenda includes:

• We plan to consider other data sources for tag’s definitions
such as Wikipedia, since we detected that not all excerpts

provided by Stack Overflow follow the initially expected
structure. For this reason, some important ecosystem tags
were not successfully categorized by the NLP algorithm.
Since Wikpedia’s excerpts are better structured to what we
expect, the categorization results may be more accurate.

• We plan to extend the current tags collection dataset to
include data on GitHub usage or the clustering algorithm
may also lead to interesting results.

• We also intend to evolve the techspace visualization, by
adding hierarchies between tags and providing more context
to the generated graph.

• Wealso plan to validate our results with practitioners through
surveys and interviews.

Our data and code, including detailed installation instructions,
are publicly available at: omitted due to TBR reviewing.

REFERENCES
[1] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment 2008 (2008), P10008.

[2] Chunyang Chen and Zhenchang Xing. 2016. Mining Technology Landscape from
Stack Overflow. In International Symposium on Empirical Software Engineering
and Measurement (ESEM). 1–10.

[3] Chunyang Chen and Zhenchang Xing. 2016. SimilarTech: automatically recom-
mend analogical libraries across different programming languages. In Interna-
tional Conference on Automated Software Engineering (ASE). 834–839.

[4] Hui Chen, John Coogle, and Kostadin Damevski. 2019. Modeling stack overflow
tags and topics as a hierarchy of concepts. Journal of Systems and Software (2019),
283–299.

[5] Israel J. Mojica, Bram Adams, Meiyappan Nagappan, Steffen Dienst, Thorsten
Berger, and Ahmed E. Hassan. 2014. A Large-Scale Empirical Study on Software
Reuse in Mobile Apps. IEEE Software 31, 2 (2014), 78–86.

[6] Joao Eduardo Montandon, Luciana Lourdes Silva, and Marco Tulio Valente. 2019.
Identifying Experts in Software Libraries and Frameworks Among GitHub Users.
In 16th International Conference on Mining Software Repositories (MSR). 276–287.

[7] João Eduardo Montandon, Cristiano Politowski, Luciana Lourdes Silva,
Marco Tulio Valente, Fabio Petrillo, and Yann Gaël Guéhéneuc. 2021. What
skills do IT companies look for in new developers? A study with Stack Overflow
jobs. Information and Software Technology 129 (2021).

[8] João EduardoMontandon,Marco Tulio Valente, and Luciana L. Silva. 2021. Mining
the Technical Roles of GitHub Users. Information and Software Technology 131
(2021).

[9] Mathieu Nassif, Christoph Treude, and Martin Robillard. 2018. Automatically
Categorizing Software Technologies. IEEE Transactions on Software Engineering
5589 (2018), 1–14.

[10] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study About Quality and Reproducibility of Jupyter Note-
books. In 16th International Conference on Mining Software Repositories (MSR).
507–517.

[11] Peng Qi, Timothy Dozat, Yuhao Zhang, and Christopher D. Manning. 2018.
Universal Dependency Parsing from Scratch. In Proceedings of the Association for
Computational Linguistics. 160–170.

[12] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. arXiv:1602.04938 [cs,
stat] (2016).

[13] Anand Ashok Sawant and Alberto Bacchelli. 2017. fine-GRAPE: fine-grained APi
usage extractor – an approach and dataset to investigate API usage. Empirical
Software Engineering 22, 3 (2017), 1348–1371.

[14] Jiangang Zhu, Beijun Shen, Xuyang Cai, andHaofenWang. 2015. Building a Large-
scale Software Programming Taxonomy from Stackoverflow. In International
Conference on Software Engineering and Knowledge Engineering (SEKE). 391–396.

	Abstract
	1 Introduction
	2 Proposed Solution
	2.1 Tags Collection
	2.2 Tags Categorization
	2.3 Community Detection

	3 Results
	3.1 Java TechSpace
	3.2 Python TechSpace
	3.3 JavaScript TechSpace
	3.4 C# TechSpace
	3.5 PHP TechSpace

	4 Usage Scenarios
	5 Evaluation
	5.1 Comparison with TechGraph
	5.2 Witt

	6 Related Work
	7 Conclusions
	References

