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Abstract—Machine Learning (ML) has revolutionized the field
of computer software development, enabling data-based predic-
tions and decision-making across several domains. Following
modern software development practices, developers use third-
party libraries—e.g., Scikit Learn, TensorFlow, and PyTorch—to
integrate ML-based functionalities into their applications. Due to
the complexity inherent in ML techniques, the models available in
the APIs of these tools often require an extensive list of arguments
to be set up. Library maintainers overcome this issue by defining
default values for most of these arguments so developers can use
ML models in their client applications effortlessly. By relying
on these default arguments, the clients inadvertently depend
on the value defined in these parameters to keep running as
expected. We interpret this problem as a semantical breaking
change variant, which we named Default Argument Breaking
Change (DABC). In this work, we leverage 77 DABCs in Scikit
Learn—a well-known ML library—and investigate how 194K
client applications are vulnerable to them. Our results show
that 72 DABCs (93%) are responsible for exposing 67,747 clients
(35%). We also detected that most DABCs (61, 79%) involve APIs
used in ML model training and model evaluation stages. Finally,
we discuss the importance of managing DABCs in third-party
ML libraries and provide insights for developers to mitigate the
potential impact of these changes in their applications.

I. INTRODUCTION

Machine Learning (ML) has changed the landscape of
creating computer software in the last decade. Thanks to their
ability to make data-based predictions, ML algorithms are
integrated into software systems assisting decision-making in
several domains like image recognition, cybersecurity, and
fraud detection applications [1]–[5]. These algorithms now
recommend whom to follow in our social network, filter spam
in our e-mail inboxes, and approve our credit score.

Following the practices of modern software development,
software developers also depend on third-party components to
empower their applications with ML-based functionalities [6].
In this context, the Python ecosystem stands out from others
due to the machine learning libraries available [7]–[9], like
Scikit Learn,1 TensorFlow,2 and PyTorch.3

1https://scikit-learn.org/
2https://www.tensorflow.org/
3https://pytorch.org/

These tools provide comprehensive APIs for developers
interested in reusing their implemented models. Due to the
characteristics of machine learning, the models available in
these APIs often require an extensive list of arguments to be
set up [9]. Considering the Scikit Learn API as an example,
the constructor of SVC4—a widely used classifier based on
SVM—provides 14 arguments to be defined. Many of these
arguments are rather specific to the model being reused,
e.g., the kernel type to be used in the classifier (argument
kernel). Fortunately, the maintainers defined a set of default
values for such arguments so developers can effortlessly use
these classifiers. In practice, developers can create a SVC
model from scratch without passing any specific value.

On the other hand, relying on these default arguments
increases the coupling between the library and its client ap-
plications; now clients depend not only on the method syntax
provided in the API but also on the values assigned to the
arguments to keep running as expected. Consequently, clients’
behaviour can be affected by just changing the values of these
arguments. For instance, Scikit Learn maintainers changed the
Kernel coefficient formula used by default in SVC—gamma
argument—from "auto" to "scale" between versions 0.21
and 0.22, which can drastically change the model’s results.

The lack of backward compatibility between library versions
is known as breaking changes [10]–[13]. Most studies deal
with breaking changes from a syntactical perspective [10],
[13]. On the other hand, breaking changes can also encom-
pass semantical modifications, i.e., they may change library
behaviour, but clients are not syntactically broken [11], [14].
We interpret this problem as a Semantical Breaking Change
variant, which we named DEFAULT ARGUMENT BREAKING
CHANGE (DABC). To the best of our knowledge, we did not
find any study investigating this type of breaking change.

DEFAULT ARGUMENT BREAKING CHANGEs play a partic-
ular role in the context of machine learning tools. First, most
components provided by these libraries are hard to inspect,
i.e., machine learning engineers may spend significant effort
debugging why a given model returned a given result [15].

4https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

https://scikit-learn.org/
https://www.tensorflow.org/
https://pytorch.org/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


DABCs add another difficulty layer to this process as a subtle
change in a model’s argument value may drastically modify
its outcome. Second, numerous Jupyter Notebooks—the tool
of choice for many data scientists experimenting with their
ML models5—lack configuration files declaring their module
dependencies [16], [17]. A recent study by Pimentel et al. [16]
indicates that less than 14% of public notebooks declare some
dependency file, e.g., requirements.txt. In other words, most
notebooks rely on the latest default argument value assigned
in their models.

In this paper, we study the occurrence of DABCs in
Scikit Learn, one of Python’s most used machine learning
libraries, and their potential impact on client applications.
We manually analyze the changes made to the default values
of the arguments in Scikit Learn functions, reported in the
official documentation, to leverage the main characteristics of
DABCs. We then investigate the likely impact that DABCs
have on client applications by analyzing the use of Scikit
Learn functions in 194,099 Jupyter Notebooks, publicly
available on GitHub. We propose four research questions:

RQ.1: What are the Most Common DABCs? In total,
we identified 77 DABCs declared in SCIKIT-LEARN.
From these, 56 DABCs point to class constructors,
e.g., SVC.__init__(). This finding suggests that
developers should pay particular attention when initializing
and configuring their models. The cv argument is the most
redefined one in 20 DABCs. This argument defines strategies
to split data during models’ training and validation.

RQ.2: In which Version the DABCs were Introduced? We
identified DABCs in eight major versions. Version 0.22
stands out with 43 occurrences, followed by 0.20 and 1.1
with 11 each; these three versions concentrate 84% of
all DABCs. The changes in these versions are related to
SCIKIT-LEARN popular features, including cross-validation
training, tree-based model setup, and parallel processing.

RQ.3: In which Modules the DABCs were Introduced? The
majority of DABCs were reported on Model Training and
Model Evaluation APIs; together, these modules hold 61 out
of 77 DABC (79%). This suggests that ML models are in the
spotlight regarding DABCs.

RQ.4: How Clients are Vulnerable to DABCs? Overall, 67,747
out of 194,099 (35%) client applications are vulnerable to one
DABC at least. These calls covered 72 out of 77 DABCs (93%)
identified in RQ.1. The presence of DABCs does not correlate
with other software metrics, such as LOC, function coupling,
and cyclomatic complexity. We also observe that two-thirds
of all vulnerable calls are affected by DABCs introduced
from version 0.22 onwards. The most vulnerable calls occur
during the models’ training and evaluation stages concerning
the machine learning pipeline modules.

We summarize the contributions of this paper as follows.
• We characterize an unexplored behaviour-breaking

change focused on changes performed in API arguments,

5https://netflixtechblog.com/notebook-innovation-591ee3221233

called DEFAULT ARGUMENT BREAKING CHANGE
(DABC).

• We leverage the characteristics of DABCs in Scikit Learn,
a well-known machine learning library in Python, and
measured how real-world client applications are exposed
to them.

• Finally, we discuss strategies that client developers should
adopt to avoid being affected by DABCs.

This paper is organized as follows. Section II defines in
detail what a DEFAULT ARGUMENT BREAKING CHANGE is,
and how it can make client applications vulnerable. Sections
III and IV describe the procedure we adopted to collect and
identify the DABCs in Scikit Learn and how to map their
occurrences in clients. The obtained results are described
in Section V. Section VI reports the implications of this
work. Section VII reports threats to validity, and Section VIII
summarizes the related work. Finally, we conclude this paper
in Section IX.

II. BACKGROUND

A. Default Arguments in a Nutshell

The Python language supports functions that, once imple-
mented, can be called with only some arguments. For instance,
the round(number, digits) function6 has two param-
eters7 and returns the number rounded to digits decimal
places. It turns out that round() can be called with both
one and two arguments; if digits is omitted, the function
rounds number to its nearest integer value. This means
that calling round(3.1415, 2) returns 3.14, while calling
round(3.1415) gives 3.0. Such behavior is possible due
to Default Arguments,8 which specify values that functions
will use if the caller provides no value to its corresponding
argument. In the above example, the function automatically
assumed digits=0 when invoking round(3.1415).

One assigns a Default Argument during function definition
by attributing an arbitrary value to the arguments the developer
wants to become optional, as shown in Figure 1. In this
scenario, executing sum(10, 20) will return 30 (a=10,
b=20), sum(10) will return 10 (a=10, b=0), and calling
sum() will return 0 (a=0, b=0).

1 def sum(a=0, b=0):
2 return a + b

Fig. 1. Function definition with Default Argument Values.

Default Arguments are a powerful resource as they mimic
method overloading—methods with the same name but dif-
ferent parameters—which is not supported in Python by
default [18]. This concept promotes flexibility, readability,
and reusability to classes interface; relevant to successful
APIs [19], [20].

6https://docs.python.org/3/library/functions.html#round
7We use arguments and parameters interchangeably in this paper.
8https://docs.python.org/3/tutorial/controlflow.html#default-argument-

values

https://netflixtechblog.com/notebook-innovation-591ee3221233
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/tutorial/controlflow.html#default-argument-values
https://docs.python.org/3/tutorial/controlflow.html#default-argument-values


B. The SCIKIT-LEARN Library

SCIKIT-LEARN is a free and open-source machine learning
library for Python, released in 2011 [21]. The library im-
plements well-known supervised and unsupervised machine
learning algorithms, such as linear and logistic regressions,
support vector machines, decision trees, and k-means cluster-
ing. The library also provides techniques to manage, evaluate,
and deploy the above-mentioned models.

Such features contributed to its adoption in several industry
and research projects. SCIKIT-LEARN is one of the most
popular machine learning libraries worldwide, with more than
1 million downloads daily.9 As of Jan 24th, 2023, the SCIKIT-
LEARN repository on GitHub has more than 52,7K stars,
almost 30K commits, and was forked above 23,9K times.

Despite its wide adoption, SCIKIT-LEARN’s API is
constantly changing. For instance, version 1.0 was released
in September 2021; the maintainers followed with eight
new versions since then. This scenario may challenge the
developers whose client applications depend on SCIKIT-
LEARN features.

Default Arguments in SCIKIT-LEARN: SCIKIT-LEARN’s API
extensively relies on Default Arguments so users can set up the
models available in the library with low effort. For example,
the SVC class provides 14 parameters to be defined through its
constructor.10 These arguments are responsible for configuring
several aspects of a SVC model, including the Kernel type
used by the model (kernel), its Kernel coefficient (gamma),
random seed values (random_state), etc.

Since all arguments have default values assigned, the user
can quickly get started without defining any parameter to the
model. Figure 2 exemplifies this fact when creating a SVC
model. Except for random_state, all arguments rely on
default values; kernel was defined to "rbf", and gamma
was assigned to "scale".11

1 from sklearn.svm import SVC
2

3 clf = SVC(random_state=42)
4 clf.fit(X_train, y_train)

Fig. 2. Default Argument Values in action in SCIKIT-LEARN.

C. What is a Default Argument Breaking Change (DABC)?

Despite the advantages of using Default Arguments, they
might bring issues to client applications relying on them.
Specifically, library maintainers can update the default values
of some parameters to meet new conditions. Changes of this
nature do not break clients’ code since the function signature
(name and arguments) remains the same. Nevertheless, they
might introduce incompatibilities as the new value change
function’s behaviour.

9According to https://pypistats.org/
10https://scikit-learn.org/1.1/modules/generated/sklearn.svm.SVC.html
11Default values available from version 1.1.2, the latest stable one at the

time of this work.

For instance, SCIKIT-LEARN maintainers updated the value
of gamma argument of the SVC classifier from "auto" to
"scale" in version 0.22. This update clearly affects models
relying on this default value as it changes the math formula
used to calculate the gamma value. Consequently, the code
that creates and trains a SVC model in Figure 2 outputs very
different results in versions 0.21 and 0.22.

DEFAULT ARGUMENT BREAKING CHANGE Example: We
illustrate this maintenance problem by implementing the min-
imum working example in Listing 3. This example classifies
the 20 newsgroup dataset, a popular real-world collection
containing 18,000 newsgroup posts grouped into 20 distinct
topics. The Stanford Natural Language Processing Group
collected this dataset over several years, and it has become
a popular alternative for experiments in text applications of
machine learning techniques. Currently, it has been used as a
benchmark in popular research works [22], [23].

1 from sklearn import datasets
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import accuracy_score
4 from sklearn.svm import SVC
5

6 # Load dataset
7 ds = datasets.fetch_20newsgroups_vectorized()
8 X = ds.data[:, 2:]
9 y = ds.target

10

11 # Create training/test data split
12 X_train, X_test,
13 y_train, y_test = train_test_split(X, y,
14 test_size=0.3,
15 random_state=42,
16 stratify=y)
17

18 # Create an instance of SVC Classifier
19 clf = SVC(random_state=42)
20

21 # Fit, predict, and measure model's performance
22 clf.fit(X_train, y_train)
23 y_pred = clf.predict(X_test)
24 print('Acc: %.3f' % accuracy_score(y_test, y_pred))

Fig. 3. Illustrative example of DABC in SCIKIT-LEARN.

In this script, we first download the 20 newsgroup dataset
and obtain their descriptive and predictive variables (lines 7–
9). Next, as with typical ML applications, we split the data
into training and test groups in lines 11–16. In line 19, we
create a new SVC instance; we intentionally did not define
any argument except for random_state to ensure the same
randomness will be present in any execution. Finally, lines
21–24 fit the model with the training data, predict it with test
data, and measure its accuracy level.

We execute this script using SCIKIT-LEARN in both ver-
sions 0.21 (gamma="auto") and 0.22 (gamma="scale").
In version 0.21, we scored 0.05 points for accuracy. The same
script reached 0.82 points for accuracy in version 0.22, a
difference of 77 points.

This issue encompasses a specific type of breaking change,
which we named DEFAULT ARGUMENT BREAKING CHANGE

https://pypistats.org/
https://scikit-learn.org/1.1/modules/generated/sklearn.svm.SVC.html


(DABC). This paper focuses on characterizing DABCs in the
SCIKIT-LEARN library and measuring its impact on client
applications.

III. DATA COLLECTION

The SCIKIT-LEARN project adopts a strict contribution
guide to enforce better software practices, with source code
documentation conventions included.12 The documentation
section provides specific instructions to report changes in
“the default value of a parameter”. According to the guide-
line, every modification involving the value of an argument
should have its docstring’s documentation annotated with the
versionchanged directive. Also, the old and new default
values should be reported together with the version the change
became effective. Figure 4 presents an example of this de-
scription in SCIKIT-LEARN project. In this case, the parameter
gamma—which belongs to the constructor of SVC class—had
its value changed from "auto" to "scale", valid from
version 0.22 onward. We relied on this guideline to collect
the DEFAULT ARGUMENT BREAKING CHANGEs studied in
this work.

class SVC(BaseSVC):
"""C-Support Vector Classification.
...
Parameters
----------
...
gamma : {'scale', 'auto'} or float,

default='scale'
Kernel coefficient for 'rbf', 'poly'
and 'sigmoid'.
- if ``gamma='scale'`` (default) ...
- if 'auto', ...
- if float, ...
.. versionchanged:: 0.22
The default value of ``gamma`` changed
from 'auto' to 'scale'.

"""

Fig. 4. Example of a default argument changed in SCIKIT-LEARN documen-
tation.

Mining Changes on Functions Arguments: On October
11th, 2022, we cloned the SCIKIT-LEARN project from
GitHub,13 and manually checked out the commit of version
1.1.2; the latest public release available. Next, we selected
all Python files in the sklearn directory, as the library’s
source files are located in this directory. We then opened
each Python file and filtered out the lines containing the
versionchanged directive; we did this using the regular
expression “\.\.versionchanged :: .+”. This procedure
initially returned 179 occurrences.

Selected Attributes: For each occurrence, we collected a list of
five attributes used to answer the research questions proposed
in this paper. We listed these attributes below:

12The contribution guide can be accessed at https://scikit-learn.org/stable/
developers/contributing.html.

13Repository available at https://github.com/scikit-learn/scikit-learn/.

• dabc msg: This attribute contains the message used to
justify each occurrence. We collected this information
manually for each occurrence during the categorization
we did to answer RQ.1.

• version: This attribute keeps the version assigned to each
occurrence as collected by the regex matching procedure.
We used this information to answer RQ.2.

• path: Collected during the repository analysis, this at-
tribute holds the relative path from the scikit directory
to the file containing the DABC. We used this attribute
to leverage the modules to answer RQ.3.

• fqn: This attribute holds the full qualified name of the
function where the occurrence was found, i.e., class name
followed by the method signature. Similar to dabc msg,
we manually leveraged this information to answer RQ.4.

• dabc url: We generate the GitHub URL referring to the
exact point in the source code where the DABC was
declared. We refer to this URL whenever we need more
context about the DABC to answer the research questions.

IV. RESEARCH QUESTIONS

In this section, we describe the methodology steps to answer
the four research questions proposed in this study.

A. RQ.1: What are the Most Common DABCs?

This RQ aims to identify the DEFAULT ARGUMENT
BREAKING CHANGEs from the changes in arguments re-
trieved in Section III. Due to the number of occurrences
retrieved, three authors manually inspected and discussed
together all 179 occurrences, selecting the ones they con-
sidered valid. For this, they perform a two-step filtering
approach. First, the three authors read the description below
each versionchanged to select the occurrences dealing only
with arguments, i.e., they filtered out unrelated changes. The
authors discarded 46 occurrences in this step reporting other
changes, such as return values, object attributes, function
refactorings, etc. Then, they analyzed each of the remaining
133 occurrences in detail to verify which of the changes can be
characterized as DEFAULT ARGUMENT BREAKING CHANGE.

They discarded another 56 occurrences performing other
changes in argument values, such as type changes (e.g., the
min_samples_split parameter started accepting float val-
ues in version 0.18),14 and in other values that can be passed
to the parameter besides the default one (e.g., the metric
argument no longer accepts a specific value in version 0.19).15

After removing these cases, we remained with 77 DEFAULT
ARGUMENT BREAKING CHANGEs.

B. RQ.2: In which Version the DABCs were Introduced?

This RQ aims to discover in which part of the release
cycle these changes are introduced. To do so, we analyzed
the distribution of DABCs among the SCIKIT-LEARN’s release

14https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

15https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
NearestCentroid.html

https://scikit-learn.org/stable/developers/contributing.html
https://scikit-learn.org/stable/developers/contributing.html
https://github.com/scikit-learn/scikit-learn/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html
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versions. As described in SCIKIT-LEARN documentation,16 the
project maintainers nominate its releases based on PEP101.
This specification describes the library’s versions using the
X.Y.Z triplet. Minor versions are tracked by the .Z suffix
and should include bug fixes and some relevant documentation
changes only, i.e., they should not contain a behaviour change
besides a bug fix. On the other hand, major versions indicating
new releases are annotated with the X.Y prefix; these versions
can contain new features and significant maintenance that
modify the library behaviour.

To answer this question, we leveraged all versions contain-
ing the X.Y.Z syntax released before version 1.1.2 from the
git tags available in the SCIKIT-LEARN git repository. We then
collected the date of the commits responsible for creating these
tags and annotated them as major or minor according to the
SCIKIT-LEARN convention described above. We identified 56
versions released in a 12-year period, where 26 are major and
30 are minor versions.

As the last step, we combined the release information with
the version field of each DABC identified in Section III. For
example, the DABC present in Figure 4 matches with version
0.22, so we considered the maintainers introduced this DABC
in a major release on 2019-12-02.

C. RQ.3: In which Modules the DABCs were Introduced?

This RQ aims to investigate in which modules of SCIKIT-
LEARN DABCs are located. We named nine modules that
comprise the phases of Machine Learning [24]. For each
commit, we manually inspected the changed source code files
using path and dabc url (described in Section III). Then, these
changes were labelled into one of the following modules:

• Dataset contains utilities to handle large datasets (e.g.,
functions to download and load data) and traditional
datasets (e.g., load and get data from a public repository).

• Data preprocessing comprises utility functions and trans-
formation techniques to apply on raw features for stan-
dardizing datasets.

• Data Decomposition consists of functions that implement
dimensionality reduction or feature selection techniques
to apply to the dataset.

16https://scikit-learn.org/stable/developers/maintainer.html#releasing

• Data Analysis contains the implementation of statistical
techniques to support the understanding of data process.

• Feature Processing includes techniques to transform arbi-
trary data into usable data supported by Machine Learn-
ing algorithms.

• Model Training consists of algorithms’ implementations
for unsupervised and supervised learning methods.

• Model Evaluation contains several techniques to measure
the estimator performance and evaluate the model predic-
tions’ quality.

• Utils comprises several utilities, such as estimate class
weights for unbalanced datasets.

• Pipeline consists of utilities to build a composite esti-
mator. We followed SCIKIT-LEARN’s documentation to
label this module.

Finally, we assigned all changes that are not directly related
to ML tasks to Others. In this study, we observed that these
changes are related to exception handlers.

D. RQ.4: How Clients are Vulnerable to DABCs?

In this question, we investigate the potential impact that
DEFAULT ARGUMENT BREAKING CHANGEs have on client
applications that use the SCIKIT-LEARN library. For this, we
implemented a data-collection pipeline that obtains a list of
real-world client applications that use SCIKIT-LEARN library,
extracts the method calls performed in these clients, and
selects the calls vulnerable to DABCs in SCIKIT-LEARN.
Figure 5 depicts this procedure; more details about each step
are described in the remainder of this section.

1 Clients Dataset: We studied some datasets containing
SCIKIT-LEARN clients and data collection strategies to
identify the best fit for our needs [8], [9], [16], [17], [25].
We consider the dataset’s size, available documentation, and
the effort to replicate and adapt it to our context. We selected
Grotov et al.’s dataset [8] due to two reasons: (a) it comes in a
structured format that can be queried using SQL; and (b) the
authors also provide a tool that analyzes the source code of
Jupyter Notebook and Python scripts, called Matroskin. This
dataset contains 847,881 preprocessed Jupyter Notebooks
written in Python, extracted from GitHub between September
and October 2020.

https://scikit-learn.org/stable/developers/maintainer.html#releasing


TABLE I
THE TOP 10 MOST REFERRED ARGUMENTS IN

COLLECTED DABCS.

Changed Argument DABCs
# %

cv 20 26.0
n jobs 8 10.4
max features 6 7.8
gamma 5 6.5
n estimators 5 6.5
n splits 4 5.2
init 4 5.2
multi class 3 3.9
return train score 3 3.9
algorithm 2 2.6

Total 60 77.9

TABLE II
DABCS FOR EACH VERSION.

Version DABCs
# %

0.19 3 3.9
0.20 11 14.3
0.21 3 3.9
0.22 43 55.8
0.23 3 3.9
0.24 2 2.6
1.0 1 1.3
1.1 11 14.3

Total 77 100

TABLE III
DABCS FOR EACH MODULE.

Modules DABCs
# %

Dataset 1 1.3
Data preprocessing 2 2.6
Data Decomposition 5 6.5
Data Analysis 2 2.6
Feature Processing 1 1.3
Model Training 42 54.5
Model Evaluation 19 24.7
Utils 1 1.3
Pipeline 3 3.9
Others 1 1.3

Total 77 100

2 Filtering SCIKIT-LEARN Clients: We selected all
notebooks relying on the SCIKIT-LEARN library from the
initially obtained dataset. Specifically, the preprocessed
database contains the list of imported modules for each client
notebook. We then queried the database for all notebooks
containing the “sklearn” string—the name of SCIKIT-LEARN
module—in their import list. In total, 194,099 notebooks met
this criterion ( S ).

3 Calls Extraction: In this step, we extracted all existing
method calls performed in each notebook. However—unlike
the list of imports—this information is not available by
default in the dataset. Instead, the authors provide only the
number of method calls that belong to external sources,
i.e., imported and third-party modules. To obtain the actual
method calls, we instrumented Matroskin ( M ) to extract all
external calls during its syntactical analysis and re-executed
it on the notebooks of Scikit dataset ( S ). We ended up with
17,436,073 external calls ( C ) extracted from the 194,099
clients.

4 DABC Matching: In the last step of this pipeline, we
selected all method calls vulnerable to DABCs. Traditionally
this could be achieved by tracking down the declaration of
the called method, retrieving its arguments, and checking if
the default argument is assigned in the call. However, it is
not straightforward to infer this information since Python is a
dynamically-typed language [7], [8], [26]. Due to this reason,
we worked on a static matching heuristic to detect calls to
methods identified as DABC.

The heuristic works as follows. We first parse17 the
definition of all 77 DABCs ( D ) identified in Section IV-A
and extract their class name (if any), method name, and
list of defined arguments. Next, for each external call ( C ),
we parse and extract its method name and list of argument
values; note that we can not directly obtain class names
as Python is dynamically-typed. Then we match DABCs
and calls based on two conditions: (a) the DABC class
name—if it exists—is in the same file where the call was
retrieved; and (b) the method name in both DABC and in

17We used the Python gast module at (https://pypi.org/project/gast/).

the call are the same. For each successful match, we pair the
call’s argument values to the DABC’s defined arguments by
assigning all positional arguments in sequence and assigning
all keywords arguments based on the key provided. Lastly,
we check if the DABC’s default argument is assigned. The
call is considered vulnerable if no value is assigned to the
DABC argument. In practice, the call did not provide a
value for it, so it relies on the DABC’s default argument value.

5 DABCs Calls Dataset: The DABC matching procedure
identified 317,648 calls vulnerable to DABCs in 67,747 client
applications. We test the effectiveness of this heuristic by
manually analyzing a randomly selected sample of 384 calls,
equally divided among three authors.18 They verified whether
both method’s call and DABC point to the same function and if
the call is vulnerable. To ensure the authors followed a similar
verification pattern, they analyzed 38 calls together (10% of
the sample size). In their evaluations, the authors identified
366 calls (95.3%, ±5%) as valid ones. From the remaining
18, the heuristic mostly fail at detecting arguments outside
the function call; e.g., arguments that were passed inside a
Python dictionary, instead. Such issue is beyond identification
in static analysis, hence out of scope in our heuristic.

V. RESULTS

A. RQ.1: What are the Most Common DABCs?

The 77 DABCs are spread over 61 distinct methods.
From these, 19 methods are declared outside of any class—
e.g., cross_validate(), k_means(), etc—and account
for 21 DABCs. All 42 remaining methods declared in classes
are constructors; they are responsible for 56 DABCs. This
finding emphasizes the central role that method constructors
play when configuring SCIKIT-LEARN models.

Individually, the methods GridSearchCV.__init__()
and RandomizedSearchCV.__init__() lead the rank
of DABCs containing three occurrences, each. Both
GridSearchCV and RandomizedSearchCV classes im-
plement strategies for optimizing ML models. Moreover, both
methods are vulnerable to changes performed in the same

18The sample size was determined considering 95% confidence level and
5% confidence interval.

https://pypi.org/project/gast/


arguments: (i) cv defines the cross-validation strategy; (ii)
n_jobs determines the number of jobs to run in parallel;
and (iii) return_train_score determines if the method
returns the computed training scores. Twelve other methods
have two DABCs each. The remaining 47 methods show up
with one DABC only.

We also analyzed the distribution of DABCs among the
changed arguments. In total, 24 arguments had their default
value changed by at least one DABC. Table I lists the top
10 most modified ones. The cv argument stands out with 20
occurrences (26%). This argument defines the cross-validation
strategy to split the data during model training and validation.
It is widely used in SCIKIT-LEARN, as most supervised
models rely on data-splitting techniques when they are trained.
Similarly, n_jobs (8 occurrences, 10.4%) is also adopted
in different scenarios. The remaining arguments belong to
specific classes and models. For instance, max_features
(6 occurrences, 7.8%) and n_estimators (5 occurrences,
6.5%) configure tree-based models.

The 77 DABCs are spread across 61 methods. 56 DABCs
occurs in class constructors. cv—responsible for defining
cross-validation strategies in ML models—is the most
modified argument present in 20 DABCs.

B. RQ.2: In which Version the DABCs were Introduced?

Table II presents the distribution of DABCs among each
SCIKIT-LEARN’s release. They are distributed in eight ver-
sions; the first ones appeared on version 0.19, released in
November 2017. Since then, we have identified DABCs in all
major releases, i.e., no DABC was reported in minor versions.

Three versions concentrate 65 occurrences, representing
84.4% of all DABCs reported in this study. Specifically,
version 0.22 stands out with 43 modifications in default
arguments (55.8%); both versions 0.20 and 1.1 appear next
with 11 (14.3%) DABCs. The five remaining versions gather
12 DABCs in total.

We inspected in detail versions 0.22, 0.20, and 1.1 to better
understand the reason for such disparity. We find that the
changes in both versions deal with SCIKIT-LEARN’s popular
features. For instance, 19 out of 43 occurrences in 0.22 deal
with cv. Other five occurrences modify n_estimators
argument. Version 0.20 presents a similar characteristic, as
eight occurrences point to the n_jobs argument. Differently,
DABCs are regularly distributed in version 1.1 with four
distinct changes varying between two and three occurrences.

We identified DABCs in all major versions since 0.19;
no DABC was found in minor ones. Version 0.22 alone
concentrates 43 out of 77 DABCs (56%), followed by
0.20 and 1.1, with 11 occurrences (14%) each; together,
these three versions gather 84% of all DABCs.

C. RQ.3: In which Modules the DABCs were Introduced?

Table III describes the classified modules. We observe that
both Model Training and Model Evaluation stand out from the
other modules, with 42 and 19 DABCs, respectively; together,
they represent more than 79% of all identified DABCs. Note
that the classes implemented in both modules deal directly
with machine learning algorithms, hence they are at the core
of most machine learning applications. The remaining modules
contain five changes or fewer.

Model Training and Model Evaluation are the ones with
most DABCs, with 42 and 19 occurrences, respectively.

D. RQ.4: How Clients are Vulnerable to DABCs?

TABLE IV
MOST FREQUENT DABCS CALLS IN CLIENT APPLICATIONS.

Class.Method(Default Argument) Calls
# %

LogisticRegression. init (multi class) 38,323 12.1
LogisticRegression. init (solver) 31,290 9.9
RandomForestClassifier. init (max features) 30,874 9.7
SVC. init (decision funciton shape) 29,904 9.4
GridSearchCV. init (return train score) 24,930 7.8
SVC. init (gamma) 22,258 7.0
KMeans. init (algorithm) 22,063 6.9
r2 score(multioutput) 20,805 6.5
GridSearchCV. init (n jobs) 16,396 5.2
RandomForestRegressor. init (max features) 14,970 4.7

Total 251,813 79.2

1) What are the most frequent DABCs?: We detected vul-
nerable calls for 72 out of the 77 DABCs identified previously
(93%); Table IV lists the most frequent DABCs identified
in client applications. The top 10 gathered 251,813 of the
317,648 vulnerable calls (79.2%), suggesting a heavy-tail
distribution. While the 10th most frequent DABC contains
14,970 vulnerable calls, the median value is 365.

We observe that nine vulnerable calls refer to class
constructors. This highlights a common practice in
SCIKIT-LEARN where most configuration arguments
are passed when creating the model instance. The
first two calls in the table refer to the same method
(LogisticRegression.__init__()), but with
different argument values (multi_class and solver).
Same behavior applies for SVC.__init__()
(decision_function_shape and gamma) and
GridSearchCV.__init__() (return_train_score
and n_jobs) methods. We also observe the same default ar-
gument used in two distinct classes: max_features is used
when calling RandomForestClassifier.__init__()
and RandomForestRegressor.__init__() methods.

We detected vulnerable calls in clients for 93% of DABCs
identified previously. The top 10 most frequent DABCs
accounted for almost 80% of vulnerable calls, with nine



of them referring to SCIKIT-LEARN models initialization.

2) How many clients are vulnerable to DABCs?: In total,
67,747 out of 194,099 clients are vulnerable to at least one
DABC (35%). Although each had to deal with 4.69 DABCs
on average, we identified nine clients with more than 100
vulnerable calls. The 99%, 95%, and 50% client percentiles
respond to 30, 16, and 2 vulnerable calls, respectively.

TABLE V
SPEARMAN CORRELATION BETWEEN THE STRUCTURAL METRICS
COLLECTED BY GROTOV ET AL. [8] AND THE NUMBER OF CALLS

VULNERABLE TO DABCS IN CLIENT APPLICATIONS. THE BULLET SHAPE
QUANTIFIES THE CORRELATION LEVEL: NEGLIGIBLE (•), LOW (••), AND

MODERATE (• • •).

Metric Correlation
Coeff. Level

CODE
WRITING

SLOC 0.38 ••
Blank LOC 0.28 •

Extended comments LOC 0.24 •
Comments LOC 0.19 •

FUNCTION
USAGE

API functions (count) 0.50 • • •
API functions (unique) 0.38 ••
Other functions (count) 0.32 ••

Built-in functions (count) 0.29 •
Built-in functions (unique) 0.19 •

User-defined functions (count) 0.18 •
User-defined functions (unique) 0.15 •

COMPLEXITY

Cell coupling 0.41 ••
Function coupling 0.14 •

NPAVG 0.13 •
Cyclomatic complexity 0.09 •

We triangulated the number of vulnerable calls with the 15
structural metrics collected by Grotov et al. [8] to verify how
traditional software metrics relate to DABCs. This is a first
step towards understanding how software quality influences
the emergence of DABCs. For this, we executed the Spearman
correlation test between the number of calls and each metric
separately. We opted for Spearman due to its robustness in
interpreting non-normalized distributions [27]. Following the
guidelines proposed in other works [6], [26], [28], we interpret
its coefficient according to the following: 0.00 ≤ negligible <
0.30 ≤ low < 0.50 ≤ moderate < 0.70 ≤ high < 0.90 ≤
veryhigh < 1.00.

Table V presents the correlation results; we marked in bold
the top three metrics with higher correlation coefficients.
Overall, we did not identify any high correlation between
the structural metrics and the number of vulnerable calls in
client applications. On the contrary, the correlation levels of
most metrics are either low (four) or negligible (ten). Only
API functions (count) presented a moderate correlation with
the number of vulnerable calls (0.50); the correlation with
API functions (unique) is lower, though (0.38, low level).
Complexity-based are independent to the number of DABCs
calls: Cyclomatic complexity, Function coupling, and NPAVG
scored the lowest correlation coefficients with 0.09, 0.13, and
0.14, respectively. These findings suggest that the presence

Fig. 6. Number of vulnerable calls in each version.

of DABCs is relatively independent of the codebase size,
functions usage, and complexity.

35% of client applications are vulnerable to DABCs.
Besides API functions (count), we did not find any
substantial correlation between source code metrics and
DABCs calls.

3) Which versions make clients more vulnerable?: Figure
6 depicts the vulnerable calls in each SCIKIT-LEARN ver-
sion. Versions 0.22, 1.1, and 0.19 stand out with 136,312
(42.9%), 72,005 (22.7%), and 51,004 (16.1%) vulnerable calls,
respectively; altogether, these versions concentrate 81.6% of
the vulnerable calls. By contrast, versions 0.23, 1.0, and 0.24
had the most negligible impact on clients with 10 (<0.01%),
1,190 (0.37%), and 1,510 (0.48%) calls.

We observe that 23% of vulnerable calls happen in more
recent versions, i.e., version 1.0 onwards. The proportion goes
to 66% when we extend this analysis to version 0.22. In other
words, two-thirds of all vulnerable calls are due to DABCs
reported from versions 0.22 onwards.

Versions 0.22, 1.1, and 0.19 had the highest impact on
clients, accounting for 81% of vulnerable calls; versions
0.23, 1.0, and 0.24 had the least. Two-thirds of all
vulnerable calls are due to DABCs reported from version
0.22 onwards.

4) Which ML modules are more vulnerable in clients?:
Table VI presents the number of vulnerable calls located in
each ML module leveraged in Section IV-C. Model Training
and Model Evaluation clearly stand out with 248,014 and
64,927 calls each; both modules condense 98.5% of all vul-
nerable calls. Such higher concentration indicates that most
DABCs show up when dealing with the machine learning
models. On the other hand, no other module gathers more than
1% of vulnerable calls; Pipeline is the highest remaining one
with 0.59%. We also verified the modules that are vulnerable
together, i.e., in the same client. In this perspective, 16,233
(24.0%) clients are simultaneously vulnerable in two modules,



TABLE VI
NUMBER OF VULNERABLE CALLS FOR EACH ML MODULE.

Module Calls
# %

Data Analysis 32 0.01
Data Decomposition 1,067 0.33
Feature Processing 103 0.03
Model Evaluation 64,927 20.43
Model Training 248,014 78.07
Utils 173 0.05
Dataset 1,070 0.33
Pipeline 1,876 0.59
Preprocessing 392 0.12

1,204 (1.8%) in three, and 172 (0.2%) in four modules.

DABCs located in Model Training and Model Evalua-
tion are responsible for most vulnerable calls (98.5%).
From the clients’ perspective, 74% are vulnerable in one
module, only.

VI. DISCUSSION

We understand that the findings reported in this paper unfold
implications for researchers, library maintainers, and library
users. We discuss them in the following subsections.

A. Implications for Researchers

DABCs are a reality. As presented in Section V-D, we found
that more than one-third of client applications are exposed to
DABCs. These clients have method calls covering 93% of all
DABCs leveraged in Section V-A. These results show that
DABCs do exist, yet we did not find studies investigating this
particular type of breaking change before. In this context, we
believe our work is a first step towards a better understanding
of DABCs in the ML ecosystem and beyond.

We lack studies that investigate breaking changes in
dynamically typed languages. Public APIs frequently rely on
function overloading to promote flexibility, readability, and
reusability [19], [20]. Although dynamically-typed languages
do not support this technique natively,19 we can still make use
of it—calling the same function with a variadic number of
parameters—by using default argument values. Consequently,
we can say that languages like Python, JavaScript, and PHP
are especially exposed to DABCs. Therefore, we understand
that dynamically-typed languages should receive more
attention in breaking changes studies [14], [29], as more
issues specific to these languages may arise.

We need to understand why library maintainers rely on
default argument values. In this study, we describe what
DEFAULT ARGUMENT BREAKING CHANGEs are, when and
where they are introduced, as well as who is vulnerable to
them. However, understanding why maintainers introduce such

19For more details see https://softwareengineering.stackexchange.com/
questions/425422/do-all-dynamically-typed-languages-not-support-function-
overloading

modifications remains open. We claim that investigating this
aspect is paramount as it could reveal typical scenarios where
these values are modified. Such findings can contribute to
design recommendations and good practices for using default
argument values.

B. Implications for Library Maintainers

DABCs present a ripple effect. As the results in Section V-A
show, DABCs are concentrated on a few arguments. For
example, the cv argument—responsible for defining cross-
validation strategies during models’ training and validation
stages—is the pivot of 26% of the DABCs we detected.
This finding suggests that, as with traditional breaking
changes, DABCs may lead to a ripple effect among the API
interface—updating the default value of one argument might
affect the behaviour of other functions in the API—ultimately
impacting a much larger number of client applications [11],
[30]. We argue that library maintainers should be aware of
this issue when updating the default values of their APIs.

Maintainers should follow semantic versioning strategies.
SCIKIT-LEARN maintainers look aware of the risks involved
in changing default argument values. As we can observe in
Section V-B, all DABCs were reported on the library’s major
versions, hence complying with semantic versioning. This
finding contradicts other results reported in the literature [12],
[13]. Although adopting this approach does not suppress the
occurrence of DABCs on client applications—for example,
clients might not rely on versioning strategies at all [16]—
adopting strict versioning guidelines is still an effective way
to keep the compatibility of libraries APIs [14].

C. Implications for Library Clients

Clients should work with package managers. The results
reported in Section V-D show that client applications are
vulnerable to DABCs; 67,747 out of 194,099 SCIKIT-LEARN
clients (35%) are exposed to at least one DABC Moreover,
clients turned out to be vulnerable to multiple API versions.
We reinforce a recommendation already mentioned in other
works: client developers must adopt minimum versioning
strategies when maintaining their dependencies, such as using
package managers [12], [14], [16].

Clients should choose carefully when to rely on default values.
As stated previously, using default argument values reduces
the effort when using a given API method. Section II shows
that, although the SVC constructor receives 14 parameters, it
is possible to create a new model without any specific as all
arguments have default values assigned. Under the hood, using
default arguments introduce data dependencies in client appli-
cations as the values provided to their functions are defined
by third parties, of which they have no control [11], [14].
Considering the context of SCIKIT-LEARN library, our work
shows these dependencies expose clients in crucial machine
learning stages, such as Model Training and Model Evaluation
(see sections V-C and V-D). Therefore, we argue that client
developers should be diligent when relying on default values.

https://softwareengineering.stackexchange.com/questions/425422/do-all-dynamically-typed-languages-not-support-function-overloading
https://softwareengineering.stackexchange.com/questions/425422/do-all-dynamically-typed-languages-not-support-function-overloading
https://softwareengineering.stackexchange.com/questions/425422/do-all-dynamically-typed-languages-not-support-function-overloading


Specifically, we suggest temporarily relying on these values;
for example, during machine learning model development and
experimentation.

VII. THREATS TO VALIDITY

Selected Library: We scoped this work on analyzing DABCs
for one library, specifically. Despite SCIKIT-LEARN being
one of the most adopted machine learning libraries, we
acknowledge it is not possible to generalize our findings to
other third-party components.

DABCs Identification Process: We rely on the documentation
provided by SCIKIT-LEARN maintainers to leverage the
DABCs investigated in this study. Naturally, this strategy
may pose some threats in detecting API changes, as we are
restricted to the changes properly documented in the library
API. In our favour, SCIKIT-LEARN maintainers follow strict
guidelines for reporting API changes, e.g., they provide clear
instructions about how to document modifications in the
library’s API, including default value changes.20 Moreover,
other researchers also relied on API documentation to obtain
breaking change candidates [9].

Clients Dataset: We rely on the dataset provided by Grotov
et al. [8] to investigate how clients are exposed to DABCs.
Although we could select other datasets to perform this
analysis [9], [16], [17], [25], we take into account the
documentation available to download and configure the
dataset locally and the publicly available tool that—after
proper adaptations—helped us in extracting the clients’
function calls. Yet, we understand it is important to expand
this analysis to other artifacts besides Jupyter Notebooks,
such as Python script files [16], [25].

Function Call Heuristic: We implemented a heuristic to iden-
tify DABCs calls in client applications. Ideally, we could
overcome this threat by executing the source code of each
client and performing a dynamic analysis over the functions
called. Even though, we opted for an static-based analysis
since previous works reported great difficulty in performing
this task [16], [17]. To ensure the reliability of our heuristic,
we manually analyzed a sample of 384 calls and find out that
95.3% (±5%) were correctly classified by the heuristic.

VIII. RELATED WORK

A. Library Updates and Breaking Changes

Various studies proposed techniques to detect and under-
stand breaking changes in libraries and frameworks [10], [14],
[31]–[34]. Mezzetti et al. [14] conducted a study on breaking
changes in the npm repository and introduced a technique
called type regression testing to automatically detect whether
a library update affects the types provided by its public
interface. According to the authors, at least 5% of all packages
experienced a breaking change in a patch or minor update,
with most of these changes attributed to modifications in the

20https://scikit-learn.org/dev/developers/contributing.html#change-the-
default-value-of-a-parameter

public package API. Mostafa et al. [32] describe a large-
scale regression testing performed over 68 adjacent version
pairs from 15 popular Java libraries to comprehend APIs’
behavioural changes over time. For this, the authors executed
each version pair and compared the output produced by them,
i.e., whether the updated code changed library behaviour. Their
result reveals that behavioural backward-incompatibilities are
common in Java libraries and are the root of many backward-
incompatibility issues. Our study investigated an unexplored
kind of behaviour-breaking change (DABCs) in Machine
Learning libraries.

B. Machine Learning APIs Smells

The literature shows that Machine Learning (ML) systems
are also prone to traditional software engineering issues [3],
[5], [35], [36]. For example, Tang et al. [37] study refactoring
and technical debt issues in ML systems. OBrien et al. [2]
also investigate technical debts in ML applications. In the
context of code smells, Zhang et al. [38] identify 22 machine-
learning-specific code smells, while Gesi et al. [36] investigate
code smell in Deep Learning software systems. Regarding API
maintenance, Haryono et al. [7] studied a list of 112 deprecated
APIs from three popular Python ML libraries to better under-
stand how they can be migrated. The authors identified three
dimensions involving deprecated API migrations: update oper-
ation, API mapping, and context dependency. Zhang et al. [9]
investigated changes performed on the API documentation of
multiple TensorFlow versions to analyze their evolution. Then,
they classified these changes into ten categories according
to the reason behind the modifications; the most common
ones are efficiency and compatibility. Differently, we studied
a behaviour-breaking change specific for changes performed
in APIs default arguments, i.e., DABCs.

IX. CONCLUSION

In this work, we investigate an unexplored type of behaviour
breaking change, which we named Default Argument Breaking
Change (DABC). Specifically, we identified the DABCs in
SCIKIT-LEARN—a well-known Machine Learning library—
and analyzed how client applications are vulnerable to them.
Overall, we analyzed 77 DABCs among eight major versions
of SCIKIT-LEARN; 93% of them were detected in client
applications We also discuss the implications of our findings
for researchers, library maintainers, and clients.

We intend to extend this work in the following directions:
(a) reproduce this study with other machine learning libraries,
such as TensorFlow, NumPy, etc; (b) investigate why
library maintainers introduce and modify default values in
libraries’ APIs; and (c) study the qualitative impact that such
modifications have on clients.

Replication Package: Data and scripts are publicly available
at Zenodo: https://doi.org/10.5281/zenodo.7868228.
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