
DOCUMENTAÇÃO DE APIs USANDO

EXEMPLOS DE CÓDIGO

JOÃO EDUARDO MONTANDON DE ARAUJO FILHO

DOCUMENTAÇÃO DE APIs USANDO

EXEMPLOS DE CÓDIGO

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Marco Túlio Valente

Belo Horizonte

Março de 2013

JOÃO EDUARDO MONTANDON DE ARAUJO FILHO

DOCUMENTING APPLICATION

PROGRAMMING INTERFACES WITH SOURCE

CODE EXAMPLES

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal de Minas Gerais in par-
tial fulfillment of the requirements for the
degree of Master in Computer Science.

Advisor: Marco Túlio Valente

Belo Horizonte

March 2013

© 2013, João Eduardo Montandon de Araujo Filho.
Todos os direitos reservados.

Montandon de Araujo Filho, João Eduardo
Documenting Application Programming Interfaces with

Source Code Examples / João Eduardo Montandon de Araujo
Filho. — Belo Horizonte, 2013

xxv, 79 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de Minas
Gerais

Orientador: Marco Túlio Valente

1. Application Programming Interfaces (APIs). 2. Software
Documentation. 3. Software Reuse. 4. Program Slicing.
5. Recommendation Systems.
1. Computação – Teses. 2. Engenharia de
software – Teses. I. Orientador. II. Coorientador. III. Título.

À todos que, de alguma forma, me inspiram a ser mais do que sou.

ix

Agradecimentos

Gostaria de agradecer a todos que, de alguma forma, me ajudaram a construir este
caminho nos últimos dois anos.

Em especial, agradeço a Deus e suas variáveis, por me guiar sabiamente du-
rante esses 25 anos.

Agradeço à minha família—em especial aos meus pais João Eduardo e Mari-
lene, e ao meu irmão Pedro Henrique—pelo imenso apoio, dedicação e compreensão.

Agradeço ao meu mentor e orientador, prof. Marco Túlio Valente, pela oportu-
nidade que certamente mudou minha vida, e pelos cinco anos de ensinamentos,
conselhos e aprendizado.

Agradeço à minha grande amiga e companheira, Míriam Cristina, por ser meu
porto seguro onde encontrei motivação e apoio incondicionais a todo instante.

Agradeço à minha nova família—em especial à Isabel Rainha e Gilberto Eustáquio—
por me incentivarem desde o início a trilhar este caminho.

Agradeço aos meus amigos—em especial os membros do LLP—pelo prazer da
companhia, convivência e respeito.

Agradeço à secretaria do DCC por todo o suporte, tanto financeiro quanto profissional.

Agradeço ao CNPq pelo apoio financeiro.

xi

“That day, for no particular reason, I decided to go for a little run. So I ran to the
end of the road. And when I got there, I thought maybe I’d run to the end of

town [...]. For no particular reason I just kept on going. I ran clear to the ocean. And
when I got there, I figured, since I’d gone this far, I might as well turn around, just
keep on going [...]. When I got tired, I slept. When I got hungry, I ate. When I had

to go...you know... I went.”
(Forrest Gump)

xiii

Resumo

O desenvolvimento moderno de software depende cada vez mais do reuso de Application
Programming Interfaces (APIs) para garantir produtividade e qualidade. No entanto,
devido ao seu tamanho e complexidade, o aprendizado de novas APIs exige um esforço
não trivial por parte dos desenvolvedores. Para facilitar esse processo, os criadores
de APIs normalmente fornecem recursos para auxiliar os desenvolvedores, geralmente
na forma de uma documentação Web. Contudo, as informações contidas nesse tipo de
documentação geralmente são insuficientes para o domínio de uma API. Visando ajudar
a preencher essa lacuna, propõe-se nesta dissertação de mestrado uma ferramenta,
chamada APIMiner, para instrumentação automática de documentações de APIs com
exemplos de código fonte. Esses exemplos são extraídos de um repositório privado de
sistemas e sumarizados por meio de um algoritmo de slicing estático. Além disso, foi
implementada uma versão da ferramenta para a API do sistema operacional Android,
chamada Android APIMiner. Para avaliar essa implementação, um estudo de campo
foi realizado no qual a plataforma foi disponibilizada publicamente para uso por quatro
meses. Para esse estudo, a plataforma extraiu 79,732 exemplos de uso de um repositório
com 103 aplicações de código aberto. Ainda, a plataforma foi visitada 20,038 vezes,
gerando mais de 40,000 visualizações de páginas e forneceu mais de 2,100 exemplos para
seus usuários. Além disso, um experimento controlado foi conduzido envolvendo 17
participantes e incluindo a realização de duas tarefas de manutenção em uma pequena
aplicação Android. Com esse experimento, observou-se que os exemplos providos pelo
APIMiner ajudam a concluir tarefas de programação que envolvem poucos elementos
da API. Por outro lado, os exemplos providos atualmente se mostraram menos úteis
para resolver tarefas mais complexas, como as que requerem protocolos de chamadas
de métodos mais elaborados.

Palavras-chave: Interfaces de Programação de Aplicações (APIs), Documentação de
Software, Reuso de Software, Slicing de Programas, Sistemas de Recomendação.

xv

Abstract

Nowadays, software development increasingly relies on Application Programming In-
terfaces (APIs) to improve quality and to increase productivity. However, learning
to use new APIs in many cases is a non-trivial task given their size and complexity.
For this purpose, API creators usually provide resources to assist developers in the
understanding process, often in the form of a web-based documentation. However,
the content available in this kind of documentation is frequently insufficient for mas-
tering a new API. As a result, most developers face serious difficulties when trying
to use modern APIs. To help developers during API learning process, we propose in
this master dissertation a platform—called APIMiner—that instruments the standard
Java-based API documentation format with concrete examples of usage. The examples
provided by APIMiner are extracted from a private source code repository—composed
by real systems—and summarized using a static slicing algorithm. We also describe
a particular instantiation of our platform for the Android Software Development Kit,
called Android APIMiner. To evaluate the proposed solution, we first performed a
large scale field study where the platform has been used by professional Android devel-
opers during four months. For this study, Android APIMiner extracted 79,732 source
code examples from 103 open source Android applications. Moreover, the platform was
visited 20,038 times (from 130 different countries), generating more than 40,000 page
views, and provided more than 2,100 examples to the users. Furthermore, we have
conducted a controlled experiment with 17 subjects, including the implementation of
two maintenance tasks in a small Android application. We observed that the examples
provided by APIMiner helped to solve specific programming tasks, which comprise few
and connected API elements. On the other hand, the current examples provided by
APIMiner are less useful to solve more complex tasks, that require the implementation
of more complex programming protocols.

Palavras-chave: Application Programming Interfaces (APIs), Software Documenta-
tion, Software Reuse, Program Slicing, Recommendation Systems.

xvii

List of Figures

1.1 APIs definition . 2
1.2 APIMiner overview . 4

2.1 Google Code Search Interface . 9

3.1 APIMiner architecture . 24
3.2 JavaDoc for the Vibrator class produced by APIMiner 25
3.3 Dependency graph that illustrates the summarization algorithm 32
3.4 An example of user feedback . 35
3.5 Example popup window for the vibrate(long) method 37

4.1 Main page of Android APIMiner . 42
4.2 A treemap visualization showing the distribution of the extracted source

code examples along the packages in the Android API 45
4.3 Number of visits per week . 50
4.4 Number of access by country . 51
4.5 Number of examples provided per week . 53
4.6 A treemap visualization showing the distribution of the examples requested

by the users along the packages in the Android API 54
4.7 Screenshots from More Aqui . 57

xix

List of Tables

2.1 API Recommendation systems . 20

4.1 Top 10 classes in number of methods . 41
4.2 Top 10 packages in number of examples . 44
4.3 Top 10 classes in number of examples . 46
4.4 Top 10 methods in number of examples . 47
4.5 Normalized scores for the metrics values used by the ranking algorithm . . 48
4.6 Origin of APIMiner accesses . 50
4.7 Top 10 countries in visits . 52
4.8 Top 10 methods in terms of examples requested by the users 55
4.9 Top 10 searching queries . 55
4.10 Number of subjects who implemented each task 60

5.1 Comparison between APIMiner and other API recommendation systems . 65

A.1 List of Android systems used in the repository of Android APIMiner . . . 71
A.2 Android systems with SVN repository . 73

xxi

Contents

Agradecimentos xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Goals and Contributions . 4
1.4 Organization . 5

2 Background 7
2.1 Introduction . 7
2.2 Code Search Engines . 8
2.3 API Recommendation Systems . 9
2.4 IDE-based Recommendation Systems 10

2.4.1 Strathcona . 10
2.4.2 API Explorer . 12
2.4.3 MAPO . 13

2.5 JavaDoc-based Recommendation Systems 14
2.5.1 eXoaDocs . 14
2.5.2 APIExample . 15
2.5.3 PropER-Doc . 17

2.6 Other Systems . 18

xxiii

2.7 Critical Assessment . 19
2.8 Program Slicing . 21
2.9 Final Remarks . 22

3 Proposed Solution 23
3.1 Introduction . 23
3.2 API Database . 26
3.3 Systems Database . 27
3.4 Extraction . 27
3.5 Summarization . 28

3.5.1 Summarization Algorithm . 28
3.6 Examples Database . 33
3.7 Ranking Algorithm . 34
3.8 JavaDoc Documentation . 36
3.9 Final Remarks . 37

4 Android APIMiner 39
4.1 Overview . 39
4.2 Android API . 40
4.3 Android APIMiner . 41
4.4 Ranking Parameters . 47
4.5 Field Study . 49

4.5.1 How Many Users Accessed Android APIMiner? 50
4.5.2 Which Locations do the Visits to Android APIMiner Come From? 51
4.5.3 How Many Examples Android APIMiner Provided? 52
4.5.4 Do Developers Search for Source Code Examples? 53

4.6 Controlled Experiment . 56
4.6.1 More Aqui . 56
4.6.2 Experiment Setup . 58
4.6.3 Experiment Execution . 58
4.6.4 Experiment Results . 59
4.6.5 Threats to Validity . 60

4.7 Final Remarks . 61

5 Conclusions 63
5.1 Contributions . 63
5.2 Comparison with Related Work . 64
5.3 Future Work . 65

xxiv

Bibliography 67

Appendix A List of Android Systems 71

Appendix B Forms Used in the Controlled Study 75
B.1 Information Form . 76
B.2 Task Descriptive Sheets . 77

xxv

Chapter 1

Introduction

1.1 Motivation

The use of APIs is increasingly common in modern software development
projects [Zhong et al., 2009]. APIs adoption brings numerous benefits, for instance:
(a) APIs contribute to reduce development time, and consequently the cost of software
products, as developers do not need to implement the services provided by the API;
(b) APIs also contribute to reduce the costs of the maintenance phase, because the
API’s maintenance and evolution is outsourced to its creators; and (c) APIs promote
reuse, since developers do not need to re-implement the services provided by an API.

According to Robillard et al. [2012] an API is “the interface to a reusable software
entity used by multiple clients [...] that can be distributed separately.”. This definition
is illustrated in Figure 1.1. Because APIs specifications are defined at source code
level, developers can access procedures, data structures, variables, and any other pro-
gramming structure provided by their creators. As examples of successful APIs, we
can mention the Java API1, .NET Framework Class Library2, C++ Standard Template
Library (STL)3, and the Android API4.

However, the use and application of current APIs generally require a nontrivial
effort. Most APIs provide resources to assist developers in the understanding process,
often available in the form of a web-based documentation. However, due to modern
APIs size and complexity, this kind of documentation is, in many scenarios, insufficient
for mastering a new, large, and complex API [Robillard, 2009; Robillard and DeLine,

1http://docs.oracle.com/javase/6/docs/api
2http://msdn.microsoft.com/en-us/library/gg145045.aspx
3http://www.cplusplus.com/reference
4http://developer.android.com/reference

1

http://docs.oracle.com/javase/6/docs/api
http://msdn.microsoft.com/en-us/library/gg145045.aspx
http://www.cplusplus.com/reference
http://developer.android.com/reference

2 Chapter 1. Introduction

Software
Entity API

Client

Client

Client

Figure 1.1: APIs definition

2011]. For instance, the Java API provided by the JDK 5 has more than 27,000
methods distributed in 32 packages [Kim et al., 2009]. As a result, most developers
face serious difficulties when trying to use modern APIs. For this reason, questions
on APIs usually represent the most common threads in programming forums. For
example, at Stack Overflow there are more than 290,000 threads discussing questions
related to the Android platform5.

Robillard [2009] identified three major points where API’s documentation can be
improved: (a) the availability of a high-level description of the API architecture; (b) the
availability of source code examples that can help to explain the API’s functions; and
(c) detailed information that could explain the API’s unexpected behavior. Recent
empirical studies also indicate that the poor quality of the documentation—which
usually is limited to describe the signature of the methods—represent one of the major
obstacles in the API learning process [McLellan et al., 1998; Robillard, 2009; Robillard
and DeLine, 2011; Buse and Weimer, 2012]. In common, such studies share the finding
that source code examples are a central instrument to facilitate and to make more
productive the use of APIs.

1.2 Problem Description

Currently, most APIs documentation are based on the JavaDoc format (or an equivalent
web-based documentation, in the case of other languages). As we argued previously,
this model of documentation does not fulfill its role, since it lacks an important infor-
mation to assist developers when learning a new API (i.e., source code examples). On
the other hand, providing source code examples manually is complex and inefficient,
because it requires a huge and specialized human effort [Mar et al., 2011].

To tackle this problem, some approaches have been proposed to provide source
code examples automatically. Essentially, these approaches aim to assist developers by

5http://stackoverflow.com/questions/tagged/android

http://stackoverflow.com/questions/tagged/android

1.2. Problem Description 3

recommending source code examples that could fit their needs. Such approaches are
referred in this master dissertation as API recommendation systems, and they can be
organized in two distinct groups: IDE-based recommendation systems and JavaDoc-
based recommendation systems.

IDE-based recommendation systems—such as Strathcona [Holmes and Murphy,
2005; Holmes et al., 2006], MAPO [Zhong et al., 2009], and API Explorer [Duala-Ekoko
and Robillard, 2011]—are implemented as IDEs’ extensions (i.e., plug-ins). The main
advantage of these systems is their ability to explore the syntactic context provided by
the IDE to recommend examples more relevant to developers. On the other hand, the
examples provided by these systems are not documentation-focused, as they are highly
dependent of a particular development context. Furthermore, IDE-based systems are
restricted to the IDE they have been implemented to.

On the other hand, JavaDoc-based recommendation systems—such as APIEx-
ample [Wang et al., 2011], eXoaDocs [Kim et al., 2009, 2010], and PropER Doc [Mar
et al., 2011]—are implemented independently from any IDE and usually can be ac-
cessed from the web. As advantages, these systems have a wider reachability (because
they are independent from other platforms) and greater scalability (because their re-
sults can be pre-processed). On the other hand, they are not able to provide the same
level of precision as IDE-based recommendation systems.

Due to their characteristics, JavaDoc-based systems can seamless replace a tradi-
tional documentation by offering a new documentation instrumented with source code
examples. Despite this fact, both APIExample and PropER Doc have not been de-
signed to replace the traditional JavaDoc, as they discard the original JavaDoc descrip-
tion information. As an example of recommendation system that extends a traditional
JavaDoc document with source code examples, we can mention eXoaDocs. However,
the examples provided by eXoaDocs are usually not from production-quality code (be-
cause they are freely extracted from web pages, without any external judgment on their
quality). Moreover, the JavaDoc generated by eXoaDocs is static (i.e., the instrumented
JavaDoc must be regenerated whenever a new source code example is processed).

In summary, to the best of our knowledge, there is no recommendation system
that extends original JavaDocs while holding their original information and that at the
same time provides small, relevant, and curated source code examples.

4 Chapter 1. Introduction

1.3 Goals and Contributions

The central objective of this master dissertation is to design, implement, and evaluate
in the field an approach to instrument current web-based API documentations with
source code examples extracted from real systems.

The proposed approach—called APIMiner—receives as input a list of methods
provided by an API of interest and a repository of real client systems that use this
API. Based on this input, the platform extracts source code examples from the systems
and stores them in an internal database. This database then feeds the instrumented
documentation—which is available to the users—with the source code examples previ-
ously extracted. Figure 1.2 illustrates the proposed approach.

API

Systems

Pre-processing Examples

User

JavaDoc

Figure 1.2: APIMiner overview

Basically, the solution proposed in this master dissertation has four main distin-
guishing characteristics:

1. The examples provided by APIMiner are automatically extracted from a repos-
itory of private systems. That is, the examples are not directly extracted from
the Web, as happens with other solutions (like APIExample, eXoaDocs, and
PropER-Doc). This characteristic allows us to control the quality of the ex-
amples. In addition, a private repository deals better with privacy issues. For
instance, it opens the possibility to adopt the solution inside corporations and
intranets.

2. In order to provide small but relevant source code examples, we have implemented
an algorithm—based on static slicing—that summarizes the raw examples ex-
tracted from real systems. Basically, the goal is to select only the statements
that have a structural dependency with the API elements that interests the user.

3. After the summarization step, the examples are ranked according to their rele-
vance, using a combination of source code, process, and usage metrics.

1.4. Organization 5

4. The original API documentation is instrumented in order to include a link to the
examples extracted and pre-processed by the platform. Therefore, it is important
to highlight that the preprocessing phase—which is responsible for extracting the
examples—can be executed independently from the querying phase.

To demonstrate and evaluate our approach, we have implemented a particular instance
of the platform for the Android API, with almost 80,000 source code examples ex-
tracted from a repository of 103 open-source Android applications. Finally, we have
performed two studies to evaluate this configuration of the platform for the Android
API. More specifically, we have conducted a large-scale field study when the platform
was used during four months by professional Android developers. We also conducted
a controlled experiment involving 17 subjects that implemented maintenance tasks in
a small Android application with the help of the source code examples provided by
APIMiner.

1.4 Organization

This master dissertation is organized in four chapters, which are described next:

• Chapter 2 presents the main works related to the central theme of this master
dissertation. More specifically, we covered basic concepts related with recom-
mendation systems and how they are being used in software engineering domains.
Also, we explain in details how these systems can help developers in API compre-
hension tasks. We also present the major approaches proposed in the literature
to tackle this problem.

• Chapter 3 presents the solution proposed in this dissertation. Basically, we de-
scribe the methodology and the decisions adopted in APIMiner’s design. We
also explain the summarization algorithm, which is a central component of our
approach.

• Chapter 4 presents the evaluation performed on a particular instance of APIMiner
for the Android API, called Android APIMiner. To evaluate Android APIMiner,
we conducted a field study and a controlled experiment.

• Chapter 5 concludes this dissertation, highlighting the contributions of our ap-
proach and the limitations we have identified during the work. Furthermore, we
present directions for future research.

Chapter 2

Background

2.1 Introduction

The following text fragment, extracted from the 9th ACM International Conference on
Recommender Systems website (RecSys), and cited by Robillard et al. [2010], gives a
general definition of a Recommendation System [ACM, 2009]:

“Recommender systems are software applications that aim to support users
in their decision-making while interacting with large information spaces.
They recommend items of interest to users based on preferences they have
expressed, either explicitly or implicitly. The ever-expanding volume and
increasing complexity of information [...] has therefore made such systems
essential tools for users in a variety of information seeking [...] activities.
Recommender systems help overcome the information overload problem
by exposing users to the most interesting items, and by offering novelty,
surprise, and relevance. Recommender technology is hence the central piece
of the information seeking puzzle.”

Basically, a recommendation system aims to help the user when he is dealing
with a large volume of data, suggesting the information that best fit into the provided
context. Similarly to people that needs to analyze a large amount of data, software
developers meet the same difficulties when trying to perform every day program devel-
opment tasks, such as understanding the behavior of a class from a large API [Robillard
et al., 2010].

For this reason, various recommendation systems are emerging in order to as-
sist developers in software engineering activities, such as recommending conceptually

7

8 Chapter 2. Background

related artifacts or in API usage examples. Such systems are usually referred as Rec-
ommendation Systems for Software Engineering (RSSEs) [Robillard et al., 2010].

In a few words, an RSSE can be viewed as a software application that provides
information items estimated to be valuable for a software engineering task according to
a determined context. By helping developers to find information they should consider
when evaluating alternative decisions, RSSEs provide a wide range of alternatives that
can be helpful to execute a software engineering task. For example, RSSEs can help
developers to find the right code, can provide examples of API usage, can rank bug
reports, etc.

More specifically, most RSSEs support developers while programming. For ex-
ample, CodeBroker analyzes—using textual similarity techniques—comments in the
source code to recommend possible class library elements that could help in the im-
plementation of a given functionality [Ye and Fischer, 2005]. The eRose plug-in mines
past changes from version control systems to discover functionally related files [Zimmer-
mann et al., 2004]. The Suade plug-in assists developers during the task of exploring a
codebase. Basically, developers specify a set of relevant fields and methods and Suade
retrieves the source files related to the provided parameters [Nagappan et al., 2006].

However, few RSSEs provide recommendations that are relevant in the process of
API comprehension, for example by recommending relevant code snippets that make
use of the desired API or by suggesting a sequence of API calls that perform a given
programming task. The following sections focuses on this kind of recommendation
systems.

2.2 Code Search Engines

Essentially, search engines index the content of a repository according to predefined
keywords [Baeza-Yates and Ribeiro-Neto, 2008]. Later, the user provides the keywords
of his interest and then the search engine returns the artifacts related to these keywords.
Nowadays, Web Search Engines (WSEs) represent the most known implementation use
of search engines concepts, as supported by platforms like Google, Yahoo, and Bing.

Following an architecture based on WSEs, some vertical search engines have been
created to search specifically for source code publicly available in the Web. This kind of
search engine is known as Code Search Engine (CSE). Differently from a Web Search
Engine, where the repository is the whole Web, CSEs index only source code files
available in open source repositories, like Google Code, GitHub, and SourceForge.

As examples of CSEs, we can mention Ohloh [Black Duck Software, 2004],

2.3. API Recommendation Systems 9

Figure 2.1: Google Code Search Interface

Krugle [Aragon Consulting Group, 2006], Codase [Codase, 2005], Jexamples [Jexam-
ples, 2005], and Google Code Search [Google, 2006]. Basically, in such CSEs the user
provides a set of keywords he is interested on, which typically represent a method or
class name. Then, the CSE searches the repository for documents that contain the text
provided by the user. Finally, the CSE returns a list of source files with the provided
text.

Figure 2.1 presents the query interface of Google Code Search. As we can observe,
the keywords are provided in textual format, and the user can customize the program-
ming languages the query should be performed on. It is important to highlight that
CSEs perform a textual search based on the provided keywords. In other words, CSEs
do not consider the source code structure.

2.3 API Recommendation Systems

Some recommendation systems have been proposed to assist developers during API
understanding tasks. In general, the goal behind these systems is to assist developers
on how to use the API effectively and correctly. For example, techniques have been
proposed to infer API usage patterns. In general terms, this kind of system is referred
as API Recommendation Systems.

10 Chapter 2. Background

In this master dissertation, we decided to divide API Recommendation Systems
into two distinct groups. The first group is referred as IDE-based Recommendation
Systems, which contains systems developed as extensions of standard IDEs. The second
group represents the JavaDoc-based Recommendation Systems, which contains systems
implemented independently of any IDE, generally in a JavaDoc format.

The distinguished feature of the systems implemented as IDEs extensions is the
possibility of using the information provided by IDEs during the recommendation pro-
cess. With this information, such systems can provide a more precise recommendation
based on the context that the developer is working on. However, this kind of tool is
restricted to developers who are using IDEs.

On the other hand, JavaDoc-based Recommendation Systems have a wider reach-
ability, because they are independent of IDEs and available in the Web. On the other
hand, due to the lack of contextual information, this kind of system usually do not
provide recommendations that are as specific to the user needs as IDE-based Recom-
mendation Systems.

In the following sections we present in details both kinds of systems. Section 2.4
describes IDE-based Recommendation Systems and Section 2.5 discusses JavaDoc-
based Recommendation Systems.

2.4 IDE-based Recommendation Systems

In this section, we will describe recommendation systems implemented as components
of Integrated Development Environments (IDEs). In general, such systems can take
advantage of the information available through the IDE to provide accurate and specific
recommendations API users. However, the users are restricted to the IDE supported
by the recommendation system.

This section presents three tools that rely on information provided by IDEs to
give recommendations related to API usage.

2.4.1 Strathcona

Holmes et al. [2006] have proposed an approach that relies on the structure of the source
code to find relevant examples in a repository [Holmes and Murphy, 2005]. Basically,
the approach first extracts a set of structural facts about the context of a source code
fragment. Then, the proposed approach relies on this structural context to search in
a pre-processed repository for code examples with similar structure. Finally, the best
results from the search are returned to developer for analysis.

2.4. IDE-based Recommendation Systems 11

The authors have built a tool that implements the proposed approach, called
Strathcona, which has two main modules: Client and Server. The Client module, a
plug-in for the Eclipse IDE, extracts the structural context from the Java source code
fragments the developer would like to get examples of use. To create a structural con-
text, the tool takes into account the following characteristics, called structural facts:
(1) the method signatures called within the fragment; (2) the types that declare each of
those methods, called declaring types; (3) the types of the fields declared by the declar-
ing types; (4) the full qualified names of the types, methods, and fields referenced by
the fragment, and (5) the supertypes of the declaring types. After the extraction pro-
cess, the Client module sends the collected structural facts to the server for processing.
Finally, the Client receives from the Server the list of similar examples.

The Server module has a repository of sample source code and a database of
structural facts that reference this repository. It is important to notice that before
Strathcona can be used, the repository and the database must be populated with
source code using the API of interest. For this purpose, this code must be provided as
an input to a preprocessing application. Basically, this application traverses the AST
of the provided code, extracts the structural context of the method declarations that
contains a relationship with the API of interest (like in the Client side), and stores the
context in the database. After the execution of this process, Strathcona is ready for
use.

When the user performs a query to the Strathcona server, the server attempts to
find structurally similar code in the repository. For this purpose, Strathcona relies on
a set of heuristics to find relevant examples. Each heuristic is executed independently
from the server and returns, as a result, a list of relevant examples based on its criteria.
Then, the lists are merged into a single list and sorted by their occurrence number.
After this sorting process, Strathcona selects the ten most relevant examples to retrieve
more details, like source code file and structure. Finally, this list is returned to the
Client module. The Strathcona Client plug-in presents the examples in the following
views: simplified UML-like class diagram, a textual description, and the source code
of the examples.

To evaluate the tool, the authors created two versions of the Strathcona repos-
itory. The first one was populated by projects using Eclipse 3.08M. The second one
was created with projects based on Eclipse 3.2M5. According to the authors, the tool
scales well, since the second repository has more than three million structural facts and
the tool takes between 0.3 to 3 seconds to generate and return the first ten examples.

12 Chapter 2. Background

2.4.2 API Explorer

Duala-Ekoko and Robillard [2011] have proposed an approach that leverages structural
relationships between API elements to reduce the effort in learning how to use an API.
Basically, the approach aims to facilitate the discoverability in APIs by recommending
method or types which, although not directly related, may be relevant in solving a
particular programming task.

To investigate the proposed approach, the authors have built a recommendation
system that provides recommendations based on the structural context that is being
developed, called API Explorer. As one of its central characteristics, API Explorer re-
lies on an API-based dependency graph to correlate API elements that are not directly
related. More specifically, API Explorer extends the content assist by recommending
relevant method call sequences that can be use to perform a programming task. Cur-
rently, API Explorer is implemented as an extension of the content assist feature of
the Eclipse IDE.

API Explorer provides three options for discovering relevant methods. The first
option helps the developer when he needs to execute a command, but does not know
how to obtain the information required by this task. In this case, the system provides,
through the content assistant, different ways to solve the problem. The second option
can be used when the developer is trying to interact with two types that are not
directly related. In this case, the system searches for a sequence of commands that
makes the link between objects of such types. The third option handles the cases where
a developer might search for a method prefix that does not exists. In this case, API
Explorer combines structural analysis with synonym analysis to recommend methods
with a similar name.

To support the mentioned recommendations, API Explorer relies on a special-
ized API-based dependency graph, called API Exploration Graph (XGraph), and on
algorithms that use this graph to generate recommendations based on the structural
context. Basically, the XGraph models the structural relationships between API el-
ements, where the API elements are the nodes and their relations are an edge. API
Explorer uses XGraphs to generate recommendations on how the API elements should
be combined. By default, API Explorer maintains an XGraph of the entire Java Run-
time Environment (JRE) and automatically links it to the XGraph of the API of
interest.

In addition to the XGraph data structure, API Explorer uses three recommen-
dation algorithms to trigger recommendations. The Object Construction Algorithm is
responsible for discovering statements that create an object of a given API type. The

2.4. IDE-based Recommendation Systems 13

Relation Exploration Algorithm looks for possible combinations between two distinct
types. Finally, the Code Generation Algorithm generates the code necessary to execute
the desired operation.

The authors evaluated the approach through studies where eight participants
replicated four programming tasks with several discoverability hurdles. Basically, this
study compares how developers are effective with API Explorer supporting. The results
show that API Explorer was frequently invoked by the participants, ranging from 5 to
15 times when they solved the tasks.

2.4.3 MAPO

Zhong et al. [2009] have proposed an API mining framework that mines API usage
patterns from a large number of code snippets. Essentially, the proposed framework
uses data mining techniques to identify sequences of API methods that are frequently
called together—known as mined API usage patterns—and recommends them associ-
ated with their code snippet representation to developers.

The authors have developed a tool called MAPO (Mining API usage Pattern
from Open source repositories) that implements the proposed framework. For this
implementation, it was necessary to develop techniques to extract the code snippets,
to identify the patterns and to recommend the results to software developers. As in
other approaches, the architecture behind the MAPO follows a pipeline structure with
three main modules that are executed in the following order: (1) code analyzer; (2)
API usage miner; and (3) API usage recommender.

The code analyzer extracts the API usage information from code snippets that
call API methods and organizes the information according to the methods from which
the information is collected. Before this analysis, the code snippets are retrieved from
a repository of open source systems. In the next step, this module parses each code
snippet and extracts the API usage information. Finally, based on the collected infor-
mation, the module links each code snippet with the API call sequence and sends it
to the next module. The proposed source code analyzer has been implemented as an
extension of the Eclipse’s JDT compiler.

The API usage miner module groups the API call sequences collected by the
previous module into clusters to reduce the interference between different API usage
scenarios. Moreover, the module mines API usage patterns from each cluster separately.
In the clustering process, MAPO calculates a similarity rate based on the average of
three metrics: (a) class name; (b) method name; and (c) the intersection of called API
methods. After the clustering process, a sequential pattern mining algorithm, proposed

14 Chapter 2. Background

by Agrawal and Srikant [1995], is applied into each cluster and the API call sequences
greater than a determined support threshold are classified by MAPO as frequent API
method call sequences. Finally, the proposed call sequences and their associated code
snippets are sent to the recommender for displaying.

The authors have conducted an experimental study, where they applied MAPO
to 20 open source projects that use the Eclipse Graphical Editing Framework (GEF).
As a result, they were able to gather 93 patterns. Specifically, the patterns include a
total of 157 API method call sequences, covering 856 API methods.

2.5 JavaDoc-based Recommendation Systems

This section presents JavaDoc-based Recommendation Systems, i.e., systems that take
advantage of the availability that is provided by the web. Once the system is available
at the web, anyone with a device that has access to the Internet can navigate through
the provided documentation. In general, as JavaDoc-based Recommendation Systems
have previous knowledge of all possible queries, they usually can be based on a pre-
processed database of examples, making them more scalable. On the other hand, the
contextual information available through IDEs cannot be used anymore.

In this section, we will discuss three JavaDoc-based recommendation systems.

2.5.1 eXoaDocs

Kim et al. [2010] argue that most API documentation do not include enough informa-
tion for developers to fully understand possible API usages [Kim et al., 2009]. They
also argue that searching for good code examples usually implies in a non-trivial effort.
In an attempt to address this problem, they have proposed an automatic technique that
extracts suitable code examples from code repositories, and generates example-oriented
API documents, with the extracted code examples. The resulting documentation ob-
tained is called eXoaDocs.

Initially, a code search engine (Section 2.2) is used to search for source code files
that contain references to any resource of the given API. After that, the technique
summarizes such references into snippets and then extracts characteristics from each
snippet for clustering and ranking. Finally, the clustered and ranked snippets are
embedded in the original API documentation.

Regarding the technique’s implementation, it has four modules: summarization,
representation, diversification, and ranking. Each module is explained in details next:

2.5. JavaDoc-based Recommendation Systems 15

• Summarization: This module searches and collects potential code examples for
each API element. To achieve this, the process leverages the Koders [Black Duck
Software, 2008] code search engine by querying it using the given API name,
and collecting the first 200 code files for each API element. Next, these files are
submitted to the summarization algorithm that transforms the collected code
into a concise snippet.

The summarization algorithm has two steps. First, the algorithm identifies and
extracts the methods with at least one use of the API element. Then, the algo-
rithm selects the semantically relevant lines related to this API element based on
a program slicing algorithm. More specifically, a line is tagged as relevant if it
satisfies at least one of the following requirements: (R1) declares the input argu-
ment for the given API usage; (R2) changes the values of the input arguments;
(R3) initialize the class of the given API element; or (R4) calls the given API
element.

• Representation: The representation module extracts information that will be
used for clustering and ranking the examples. More specifically, this module
extracts the element vectors from the snippet’s AST using a clone detection
algorithm and, computes the similarity between the extracted vectors.

• Diversification: In the diversification module, the code examples are clustered
based on their extracted vectors. To perform the clustering process, the k-means
algorithm was applied varying the number of clusters and then choosing the result
with the best quality according to a predefined set of quality metrics.

• Ranking: This last module is responsible for ranking the clustered examples,
using two different ranking procedures. First, the summarized code snippets are
ranked in each cluster to select the most representative example from each one
based on measures such as representativeness, conciseness, and correctness. Next,
the selected examples are sorted based on the number of occurrences.

To evaluate the tool, the authors have generated a version of eXoaDocs for the
Java API. As a result, the approach has found examples for 20,480 methods, which
represents 74% of the considered API.

2.5.2 APIExample

With a different focus than the eXoaDocs platform, Wang et al. [2011] take advantage
of existing information in the web to provide examples of API usage. The supporting

16 Chapter 2. Background

tool, called APIExample, identifies and extracts usage examples directly from web
pages. In addition to the extraction, the proposed tool retrieves possible descriptive
texts related to the extracted examples.

Basically, given a Java API, the tool collects related web pages from the web,
extracts the Java code snippets with descriptive texts that explain the respective snip-
pets, and assembles them into usage examples. Furthermore, the tool clusters and
ranks the collected examples and provides some information related to the API use.
APIExample provides two interfaces to end-users: a plug-in for the Eclipse IDE, and
a web site1.

The approach behind APIExample consists of four main modules, respecting
a pipeline architecture: (1) the web page collection module, (2) the usage example
extraction, (3) the example clustering and ranking modules, and (4) the statistics
analysis module.

The Web Page Collection module is responsible for gathering web pages related
to the API of interest. APIExample collects pages by leveraging Google through a
query of API_FQN example java, where API_FQN represents the full qualified name
of the given API. The first 300 web pages obtained from the search are downloaded
and linked to the given API.

After the downloading process, the web pages are passed to the second module:
The Usage Example Extraction. Basically, in this module, the examples and associate
descriptive text are extracted from the pages. To perform this process, the page content
is firstly divided into segments based on specific HTML tags. Next, the segments are
submitted to a classification algorithm to determine whether they represent a code
snippet. Basically, the algorithm first relies on a set of textual heuristics to verify if
the segment “looks like” a code snippet. As central elements of the proposed heuristics,
the authors consider the presence of braces and parentheses, the presence of lines
ending with semicolon and the presence of reserved keywords, like public, protected,
and private. Then the tool verifies whether the snippet is syntactically correct by
executing a parser on it. If a problem occurs during this process, the parser conducts
some adjustments in an attempt to fix it. Also during the parsing phase, structural
information on the snippet is recorded for use in the following stages.

Once an snippet is found, the Usage Example Extractor module relies on another
algorithm to identify descriptive texts explaining the selected snippet. For this purpose,
the algorithm considers text fragments located immediately before or after the snippet.

After the extraction step, the approach applies a clustering and ranking process

1http://www.apiexample.com

2.5. JavaDoc-based Recommendation Systems 17

over the collected examples. To calculate the similarity between examples, the authors
use the sequence of API method calls exposed by each example. That is, examples
that invoke the same methods of the target API are clustered in the same category.
Next, the examples are ranked based on two criteria: (a) inter-cluster ranking, where
the clusters are ranked based on the number of examples in each cluster; and (b) intra-
cluster ranking, where the examples are ranked based on a set of metrics, like the
number of API methods that are invoked and the number of descriptive texts attached
to the example.

Finally, the tool conducts an statistical analysis over the data produced during the
aforementioned stages to collect information related to the usage of the API methods,
like the distribution of different API’s usages and the frequently co-used APIs. The
calculated data is stored in a database as well as the extracted usage examples for
retrieving.

2.5.3 PropER-Doc

Mar et al. [2011] have proposed a methodology that recommends proper code exam-
ples for documentation purpose. The methodology—named as Proper Example Rec-
ommendation for Documentation (PropER-Doc)—aims to recommend code examples
that demonstrate a whole object interaction scenario during the use of an specific API
type.

Basically, given an API type of interest, PropER-Doc collects code example can-
didates from code search engines (CSEs) and recommends candidates meeting the
developer requirements. The candidates are evaluated based on their relationship with
other API elements (by means of API element links), where candidates in a higher
syntactical level are selected first. Finally, the examples are ranked according to three
recommendation metrics: significance, density, and cohesiveness.

Internally, the PropER-Doc approach can be divided into three main stages. In
the first stage, PropER-Doc constructs a set of API element links that models im-
plicit API element usage dependences. Basically, a link between two API elements
is represented by a tuple where the API elements included in this tuple are struc-
turally or conceptually related. Structural links represent structural relations between
API elements, such as relations due to inheritance or composition. On the other side,
conceptual links represent relations found on the descriptive content of the API docu-
mentation. Once this database is populated, PropER-Doc is ready for use.

In the second stage, the developer provides the API type he is interesting on—
known as targetType—to PropER-Doc. Once this targetType is accepted as a query,

18 Chapter 2. Background

it is forwarded to a CSE. The CSE searches in the web and returns relevant source
files according to the provided targetType. PropER-Doc then parses each file and
extracts the method’s implementations—known as example candidates—that contains
at least one call to the desired targetType. After collecting candidates from the CSE,
the API calls relevant to demonstrate targetType within each candidate are captured
and annotated based on API element links. For each API call identified, its relevance
to the targetType is evaluated. If this call is considered relevant, it is annotated with
a level that indicates its importance.

Finally, in the third stage the candidates annotated as relevant are reorganized
and presented to the developer. The candidates are divided into groups according
to the API types they contain. Once the developer decides to select code examples
from a group, the candidates are ranked based on three metrics: (a) significance,
which evaluates the importance of all API calls used by a candidate; (b) density,
which evaluates the portion of lines of code that are annotated; and (c) cohesiveness,
which evaluates the aggregation level of annotated API calls within a candidate. The
candidate list is sorted according to the sum of the three metrics and the ordered list
is returned to the developer.

PropER-Doc has been implemented to support recommendation of code examples
for a framework implemented in Java. The Google Code search engine is used as the
default CSE for performing the code search. The Eclipse JDT AST parser is used
to construct the structural API element links and to parse the example candidates.
Moreover, the Jericho HTML parser is used to parse Javadoc pages in order to extract
conceptual API element links.

2.6 Other Systems

This section presents other systems that aim to assist developers in the process of
understanding APIs. As in the previously discussed systems, several techniques are
supported by these tools, such as structural analysis, data mining algorithms, and
ranking heuristics.

Thummalapenta and Xie [2007] have developed the PARSEWeb tool, which ad-
dress the problems faced by programmers in reusing existing frameworks or libraries.
Basically, the approach accepts queries in the form Source → Destination as input
and suggests method invocation sequences that reach the Destination type from the
Source type. To extract this path between types, the approach relies on code samples
extracted from CSEs.

2.7. Critical Assessment 19

Actually, PARSEWeb is based on the approach proposed by Mandelin et al.
[2005]. In this work, the authors have implemented a tool, known as Prospector, which
accepts queries in the form of a tuple (Tin, Tout) and suggests paths between Tin and
Tout. However, differently from PARSEWeb, the approach behind Prospector relies
only on the information contained in the API signatures.

Michail [2001] has developed the CodeWeb tool, which uses data mining tech-
niques to detect patterns of use of APIs. Specifically, CodeWeb mines a repository for
patterns of use of APIs, i.e., the goal is to infer—through association rules techniques—
relationships between API calls. More specifically, if the relationship between a set of
API calls is frequent, it is classified as a pattern of use.

The Eclipse Foundation [2011] is developing a set of IDE extensions to support
developers learning new APIs, called Eclipse Code Recommender. More specifically,
Eclipse Code Recommender provides two main modules: (a) Intelligent Code Comple-
tion Engines, which assist developers by recommending more relevant code snippets;
and (b) Extended Documentation Providers, which aggregate information related with
the API available in the web.

2.7 Critical Assessment

Table 2.1 compares the systems described in this chapter. We have classified the
systems using six different attributes: input, interface, output, repository, clustering,
and ranking. Moreover, we have classified the available tools into three major groups:
(a) Code Search Engines (CSEs); (b) JavaDoc-based tools; and (c) IDE-based tools.

The Input attribute represents the input parameter required by the tool to per-
form the search for an example. Considering this property, IDE-based tools hold the
most fine-grained parameter, which is the Statement that the user is directly inter-
ested on. As JavaDoc-based tools do not have this information, they generally rely
on Type and Method names to perform the recommendation. CSEs have the simplest
parameters for the recommendation, i.e., just a fragment of Text.

The Interface denotes the end-user interface proposed by the recommenda-
tion system. Generally, IDE-based tools are implemented as IDE’s extensions, usually
plugins. On the other hand, JavaDoc-based tools can provide platform-independent
interfaces with the user through the Web.

The Examples property defines the level of granularity used for extraction and
recommendation of examples. In this case, the level of granularity is related directly
with the strategy adopted when extracting the source code examples. The lowest

20 Chapter 2. Background

Category System Input Interface Output
CSEs CSEs Text Web File

IDE
Tools

Strathcona Statement Plugin Method
API Explorer Statement Plugin —

MAPO Statement Plugin Method

JavaDoc
Tools

eXoaDocs Method Web Slicing
APIExample Type Web/Plugin Text
PropER-Doc Type Desktop Method

Category System Repository Clustering Ranking
CSEs CSEs Web — �

IDE
Tools

Strathcona Private — �
API Explorer Private — —

MAPO Private � �

JavaDoc
Tools

eXoaDocs Web � �
APIExample Web � �
PropER-Doc Web � �

Table 2.1: API Recommendation systems

granularity level can be obtained by an slicing process, which selects code snippets that
contain just the statements related to the API element of interest. The coarse-grained
granularity is represented by a File, which returns the whole source code file that
contains the desired API Element. Moreover, other solutions provide an intermediate
granularity level, such as a Method or a Text.

The Repository attribute indicates the dataset from where the tools extracts the
recommendations. Basically, the repositories can be divided into two major groups:
Private and Web. Tools based on Web repositories extract examples from the Web
directly or through a CSE. On the other hand, tools based on Private repositories
have first to populate their repository with systems that use the desired API.

Finally, the Clustering and Ranking properties show whether the systems use
an strategy of clustering and ranking for recommending examples. As we can observe,
it is common to implement a ranking algorithm over the extracted examples. On the
other hand, it is more rare to have tools that rely on clustering algorithms.

2.8. Program Slicing 21

2.8 Program Slicing

Generally, the time spent to understand how a software works is directly related with
its size and complexity. To tackle this problem, software developers usually attempt to
limit their analysis to the lines of code that implement a desired feature. However, this
process is expensive and complex to developers, once they need to manually discover
which lines are related to the feature of interest.

Weiser [1981, 1984] has proposed an approach that automatically decomposes
programs into independent code fragments, known as program slicing. In a few words,
a slicing algorithm receives two arguments: (a) the source code that will be sliced;
and (b) a statement that represents the seed statement. Then the slicing algorithm
processes each statement and selects those related to the seed statement.

For statement selection, a slicing algorithm analyzes the data and control flow
dependencies in which the statement is inserted. If a statement belongs to the same
control/data flow of any statement related to the seed, it is included in the slice pro-
duced by the algorithm. A data flow dependency represents the data relations that
exists between the statements of the program. A control flow dependency represents
a relation between two or more statements where the first statement decides whether
the other should be executed or not.

Program slicing techniques can be divided into two major approaches: static and
dynamic slicing [Harman and Hierons, 2001]. The static slicing uses the information of
the source code structure to discover dependencies in compilation time. For this pur-
pose, a static slicing algorithm performs the slicing process over the dependency graph
that represents the program. Unlike a static slicing, dynamic slicing techniques use the
information of a particular instance of the program execution to discover dependencies
between statements at runtime.

Moreover, the technique can be performed in two ways: backward and forward.
Basically, a backward slicing detects all the statements that can affect the seed state-
ment. On the other hand, a forward slicing detects all the statements that could be
affected by the seed statement.

Listings 2.1 and 2.2 illustrate an example of an slicing. Listing 2.1 represents the
code that will be sliced. As seed we selected the line represented by the assignment
in line 5. With this seed as input, the static slicing technique selects the lines 1 and
10, based on their data dependency, and selects the for loop (lines 4 and 7), based on
its control dependency. As a result of the static slicing process, we obtain the code in
Listing 2.2.

Examples of program slicing applications include debugging, testing, program

22 Chapter 2. Background

Listing 2.1: Original code

1 int sum = 0;
2 int prod = 0;
3
4 for(int i = 1; i < 20; i++) {
5 sum = sum + i; //seed
6 prod = prod + i;
7 }
8
9 System.out.println(prod);

10 System.out.println(sum);

Listing 2.2: Sliced code

1 int sum = 0;
2
3
4 for(int i = 1; i < 20; i++) {
5 sum = sum + i; //seed
6
7 }
8
9

10 System.out.println(sum);

comprehension, and program parallelization. In this master dissertation, we will rely
on a static slicing algorithm to select relevant statements that illustrate examples of
usage of the methods provided by an API.

2.9 Final Remarks

This chapter presented background work related with API comprehension area. More
specifically, we described solutions that aim to ease the API learning process. As we
can observe, recommendation systems have great potential to assist developers in their
every day programming tasks.

We decided to divide the solutions in two main groups: (a) IDE-based recommen-
dation systems; and (b) JavaDoc-based recommendation systems. As an advantage,
IDE-based systems can use the IDE context to provide accurate recommendations. On
the other hand, this kind of system is tightly coupled to a particular IDE. Unlikely,
JavaDoc-based systems have wider reachability, since they are available on the web.

Finally, we have classified the main recommendations systems available in the
literature based on six criteria: Input, Interface, Output, Repository, Clustering, and
Ranking.

Chapter 3

Proposed Solution

3.1 Introduction

The central idea behind our solution is to provide additional information that extends
traditional JavaDoc documentation. We claim that JavaDoc lacks information that are
essential when developers are learning how to use APIs. In other words, traditional
JavaDoc does not fulfill its purpose, which is to provide a reliable and centralized
information base for understanding APIs.

Robillard [2009] has conducted a survey over 83 Microsoft developers to identify
the problems that impact the API understanding process. Basically, the survey has
identified three distinct issues that difficult the API learning process. First, a lack
of API high-level design structures, which could help developers to decide what and
when to use API resources. Second, a lack of source code examples that are usually
indicated by developers as essential learning artifacts. Third, a lack of APIs’ internal
information that could explain possible unexpected behaviors.

Our approach extends traditional API documents by including real examples
of use. More specifically, we implemented our approach as a JavaDoc-based system,
called APIMiner. We decided to implement APIMiner for JavaDocs because this format
represents the de facto standard for documenting APIs in Java. Moreover, we have
structured APIMiner to provide an scalable solution, once the examples are first pre-
processed and stored in an example’s database. In other words, there is any kind of
processing when developers are navigating through the extended JavaDoc provided by
APIMiner, except straightforward database accesses.

Figure 3.1 presents the internal structure of the APIMiner platform. Regarding
its architecture, APIMiner can be divided into two major phases: preprocessing and
querying. The preprocessing phase is responsible for the computation that is necessary

23

24 Chapter 3. Proposed Solution

Figure 3.1: APIMiner architecture

for extracting the examples. This phase comprises steps ranging from the API/System
Databases population to example extraction and summarization.

The preprocessing phase must be executed first, as it is responsible for extract-
ing the examples. In this phase, the APIMiner administrator should populate the
API Database, which contains a list with the signatures of the target API methods.
Then, when a system is registered in the System Database, APIMiner parses its source
code and extracts the examples based on the method signatures registered in the API
Database.

The querying phase is responsible for the interaction between API users and
the APIMiner system. In this phase, API users can navigate through the extended
JavaDoc-based documentation generated by the APIMiner system. When end-users
query for examples of a specific API method, APIMiner basically access the Examples

3.1. Introduction 25

Database and returns a list of source code examples that invoke the informed method.
Figure 3.2 illustrates how an original JavaDoc is instrumented, by showing the new
documentation for the Vibrator class of the Android API1.

Figure 3.2: JavaDoc for the Vibrator class produced by APIMiner

More specifically, APIMiner architecture has seven main components:

API Database: The API Database component stores the API Elements—i.e., API
method signatures—provided by the API of interest.

Systems Database: The System Database stores the source code of systems
that use the API of interest in their implementation. In other words, the examples
provided by APIMiner come from the systems present in this repository.

Extraction: The Extraction Module parses each source code file available in
the Systems Database and searches for API methods calls. When an API call is
discovered, the module forwards the whole method declaration with the API call to
the Summarization Module.

Summarization: This module receives the whole method declaration as input
and filters the source code lines related with the selected call. For this purpose, we
have implemented a static slicing algorithm that selects structurally related lines
based on the variables used by the selected API method call.

1http://java.llp2.dcc.ufmg.br/apiminer/docs/reference/android/os/Vibrator.html

26 Chapter 3. Proposed Solution

Examples Database: The Examples Database stores the examples that have
been previously summarized. These examples represent code snippets that call
methods of the target API.

Ranking: This module sorts the examples to provide the most interesting ex-
amples first. Currently, our ranking algorithm relies on four metrics: (a) number of
lines of code of the example; (b) number of commits of the example’s target source
file; (c) number of downloads of the example’s system; and (d) user feedback.

JavaDoc: This module represents the original JavaDoc instrumented by APIMiner to
include source code examples. Users can navigate through this instrumented JavaDoc
as usual and, when necessary, request examples for a given API method.

The following sections explain in details how these modules work internally.
More specifically, Section 3.2 describes the API Database. Section 3.3 shows the
internal structure of the Systems Database. Sections 3.4 and 3.5 describe how the
example’s Extraction and Summarization work. Finally, Section 3.7 and Section 3.8
document the main implementation decisions behind the Ranking and JavaDoc
modules.

3.2 API Database

The API Database stores information regarding the API that will be instrumented by
the APIMiner platform. That is, the proposed solution will provide examples for the
methods registered in this database. With this approach, APIMiner administrators
can easily customize the tool in order to define which API methods they are interested
to provide examples.

To insert an API method in this database, the administrator needs to provide the
method’s signature and the full qualified name of the class that the method belongs
to. Once these data are provided, the APIMiner platform creates a tuple (APIclass,

APImethod) with the given information and stores it in the Database.

For example, if the administrator wants to register the method substring(int

beginIndex, int endIndex) of the String class, he needs to inform the method
signature, i.e., substring(int,int), and the full qualified name of its class,
i.e., java.lang.String.

3.3. Systems Database 27

3.3 Systems Database

The Systems Database is a repository that contains the source code of the systems
that will be parsed to provide the examples proposed by our solution. In other words,
the examples provided by the APIMiner platform are extracted from the source code
of systems previously inserted in this repository.

The systems inserted in the Systems Database must attend two conditions. First,
they must use the API of interest in their implementation. Second, they must be
inserted through a specific protocol defined by APIMiner. Particularly, a system must
be inserted in one of the following ways: (a) as a compressed file; or (b) as a system
that is under a version control system (VCS). In both options, the user must provide
a link to the system that will be inserted. For compressed files, the user must provide
the file’s download link. For systems under VCS, the user must provide the link that
represents the main branch of the system.

Once the user informs a respective link, the APIMiner platform downloads the
system into the Systems Database and builds it, if necessary. For systems under a
VCS—more specifically SVN, in our current prototype implementation—the APIMiner
platform collects historical information, like the number of modifications, on each
source file and also stores this information into the database. If available, this in-
formation will be used as one of the criteria during the ranking process (Section 3.7).

3.4 Extraction

The Extraction Module represents the first computation step executed by the prepro-
cessing phase. In a few words, this module is responsible locating and selecting code
snippets that might represent an example of usage of a given API method. Basically,
the module searches the System Database for API method calls and then sends the
source code fragments with the APIs calls to the Summarization module, which is
explained in details in Section 3.5.

To perform its task, the Extraction module first parses each source code file
and analyzes each method call found during this process. For each method call, the
module verifies whether it belongs to the API under analysis. We have implemented
this verification by checking the method signature and the full qualified name of its
class. When an API method call is found, the module marks the line that invokes
the API method and sends it, along with the enclosing method declaration, to the
Summarization Module.

28 Chapter 3. Proposed Solution

In the implementation of this module, we have used the Eclipse Compiler for Java
(ECJ), which is part of the Java Development Tools (JDT) of the Eclipse IDE. The
ECJ compiler has a set of libraries for parsing, compiling, and analyzing Java source
code files.

3.5 Summarization

The Summarization Module is a central component in the preprocessing phase. Basi-
cally, this module extracts source code lines representing an example of API usage and
stores the extracted code in the Examples Database.

More specifically, this module receives as input two arguments: (a) a source code
statement that contains an API method call; and (b) the whole method declaration
containing the selected source code statement. First, this module selects the source
code statements important for understanding the API method call. Then, the selected
statements are extracted and grouped into a small source code fragment. This resulting
fragment represents an example of usage of the selected API method.

For selecting the statements included in the example, we have implemented a
slicing algorithm that extracts the statements structurally related with the API method
call. Section 3.5.1 explains in details this algorithm.

3.5.1 Summarization Algorithm

Typically, good source code examples have some attributes that make them meaning-
ful [Robillard and DeLine, 2011]. Basically, a good source code example must include
its context, must have few lines of code, and must highlight the computation provided
by the API. Further, a good example must be executed with minimal effort. In other
words, a good example must be small, compact, readable, and expressive.

In order to obtain examples meeting the aforementioned conditions, we rely on a
summarization process that extracts the source code lines structurally related with a
given API method call. For this purpose, we have proposed a static slicing algorithm
that performs the source code summarization.

By applying a slicing algorithm over a source code fragment, we obtain many
of the attributes that features a good example. Because slicing algorithms extract
statements that are structurally related, they ignore source code lines not connected
with the context under extraction. For this reason, as result we have source code
examples that are smaller and more readable. Moreover, the ignored lines do not
impact in the execution of the example.

3.5. Summarization 29

Summarization(seed , body)

1 summarizedStmts = ∅
2 selectedStmts = seed
3 while selectedStmts 6= ∅
4 do
5 currentStmt = Pop(selectedStmts)
6 if currentStmt /∈ summarizedStmts
7 then
8 readableVars = GetReadableVariables(currentStmt)
9 previousStmts = GetPreviousStmts(currentStmt , body)

10 selectedStmts = selectedStmts ∪
BackwardSlicing(readableVars, previousStmts)

11 if currentStmt = seed
12 then
13 writableVars = GetWritableVariables(currentStmt)
14 nextStmts = GetNextStmts(currentStmt , body)
15 selectedStmts = selectedStmts ∪

ForwardSlicing(writableVars, nextStmts)
16 if currentStmt is a child of a control dependence statement
17 then selectedStmts = selectedStmts ∪ GetParentStatement(currentStmt)
18 summarizedStmts = summarizedStmts ∪ currentStmt
19 return summarizedStmts

BacwardSlicing(vars, statements)

1 result = ∅
2 for stmt ∈ statements
3 do
4 stmtVars = GetWritableVars(stmt)
5 if vars ∩ stmtVars 6= 0
6 then result = result ∪ stmt
7 return result

ForwardSlicing(vars, statements)

1 result = ∅
2 for stmt ∈ statements
3 do
4 stmtVars = GetReadableVars(stmt)
5 if vars ∩ stmtVars 6= 0
6 then result = result ∪ stmt
7 return result

Listing 3.1: Summarization algorithm

30 Chapter 3. Proposed Solution

Listing 3.1 presents the pseudo-code that describes our summarization algorithm.
Basically, the algorithm is composed by three main functions: (a) Summarization;
(b) BackwardSlicing; and (c) ForwardSlicing. In fact, the algorithm has other
functions not showed in this pseudo-code because they have an auxiliary role. In a
few words, GetReadableVars and GetWritableVars return the variables that a given
statement reads or writes to. In a similar way, GetPreviousStmts and GetNextStmts

functions return statements located before and after a given statement. Finally,
GetParentStatement retrieves the statement that is the lexical parent of a given
statement (considering that the statements are represented by an Abstract Syntax
Tree (AST), as usual).

The Summarization method represents the entry-point of the summarization
algorithm. The method receives as input two arguments: (a) seed, which is the state-
ment with the API method call; and (b) body, representing all existing statements in
the method declaration where the seed was found.

The method starts by declaring two local lists: summarizedStmts, which stores
statements that have been processed and were considered relevant to the example
(line 1); and selectedStmts, which stores statements that are relevant but that
have not been processed by the algorithm (line 2). The algorithm then iterates over
selectedStmts and executes the slicing process for each statement (lines 3-18). Then,
the summarizedStmts list is returned with the relevant statements (line 19).

Inside the loop, the algorithm gets a statement from selectedStmts and verifies
whether it has been processed (lines 5 and 6). If it has not, the slicing algorithm is
executed based on the retrieved statement, which is stored in currentStmt (lines 8-18).
Basically, first the algorithm retrieves the readable variables from currentStmt and
the statements located before it (lines 8 and 9). Then, we call the BackwardSlicing

function with readableVars and previousStmts as input, and after that we store the
result in selectedStmts for subsequent iterations (line 10). If currentStmt and seed

are the same, the algorithm retrieves the writable variables and the statements located
after currentStmt. Then, we call the ForwardSlicing function with writableVars

and nextStmts as input, and after that we store the result in selectedStmts for
subsequent iterations (lines 11-15). Next, the algorithm verifies whether currentStmt
is nested in a control dependence block and, if true, retrieves this block and inserts it
in selectedStmts for further processing (lines 16 and 17). Finally, the statement that
has been processed is stored in summarizedStmts (line 18).

Both BackwardSlicing and ForwardSlicing work in a similar way. They receive
as input a list of variables, used to determine whether a statement is relevant, and a list
of statements to analyze. Then, both methods iterate over the statements list (lines

3.5. Summarization 31

2-6), extract the variables of each statement (line 4), and verify whether there is an
intersection between the extracted variables and the variables received as parameter
(line 5). If so, the statement is inserted in a list returned by the methods (lines 6 and 7).

The difference between both methods relies on the variables extracted from each
statement. BackwardSlicing extracts only the writable variables of each statement,
while ForwardSlicing extracts only the readable variables. This combination be-
tween the called slicing method and its respective parameters ensure that the sum-
marization algorithm works as expected. That is, because BackwardSlicing receives
readableVars and previousStmts as parameters, the method actually verifies whether
any previous statement writes to a variable that the slice reads. In a similar way,
ForwardSlicing receives writableVars and nextStmts as parameters and verifies
whether any further statement reads a variable that is changed by the statements in
the slice.

Although not showed for the sake of readability, our algorithm includes a last
step where we remove from the returned slice any statement with an empty block
(e.g., for(...){} or if(...){}).

Example: To illustrate the proposed summarization algorithm, we will rely on the
method declaration presented in Listing 3.2. Basically, this code receives the name of
a client and presents a welcome message with his name at the console. Further, the
fragment gets the current time and prints the corresponding hour.

1 public void welcome() {
2 String client = "Smith, John";
3
4 Calendar cal = Calendar.getInstance();
5 int hour = cal.get(Calendar.HOUR_OF_DAY);
6
7 int ini = 0;
8 int end = client.indexOf(",");
9

10 if (end >= 0) {
11 String surname = client.substring(ini, end);
12 System.out.println("Welcome back Mr." + surname);
13 System.out.println("Now, it is: " + hour + " hour(s)");
14 }
15 }

Listing 3.2: Method that calls a given API method (in this case substring, line 11).

32 Chapter 3. Proposed Solution

Figure 3.3: Dependency graph that illustrates the summarization algorithm

Suppose this method declaration has been retrieved by the Extraction Mod-
ule, when searching for examples for the java.lang.String.substring(int, int)

method. In other words, this method declaration was retrieved due to the existence
of a call to substring(int,int) in line 11. Therefore, this line represents the seed of
the summarization algorithm.

As we can observe, the seed call itself does not carry enough information to
explain the use of the API method. First, it is important to include information on
the variables used by the seed statement. More specifically, it is important to know
the values of the variables client, ini, and end. Moreover, it would be interesting to
know how the value returned by the function—in this example assigned to the surname
variable—is used further. Finally, it is important to present the control dependences
that impact the execution of the seed statement.

Considering the source code in Listing 3.2, we selected the call to substring(int,
int) as our seed call (line 11). First, the algorithm extracts the readable variables
(ini, end, and client), and searches for statements that write on them (lines 2, 7,
and 8). Because we are iterating over the seed call, the algorithm also extracts writable
variables (surname), and searches for statements that read these variables (line 12).
Then we apply a new iteration of the algorithm for each statement previously selected.

Figure 3.3 illustrates this process using a dependency graph. Basically, each node
in this graph represents a statement in the source code, and the node numbers denote
their respective line. The edges represent data relationships characterized by the use
of a given variable (reported as the edge’s label). For instance, node 8 is related with
node 2 through the use of the client variable.

Furthermore, as the seed statement is enclosed by an if statement (lines 10 - 14),
we extracted the variables used by the if’s expression and apply the algorithm over

3.6. Examples Database 33

1 String client = "Smith, John";
2 int ini = 0;
3 int end = client.indexOf(",");
4
5 if (end >= 0) {
6 String surname = client.substring(ini, end);
7 System.out.println("Welcome back Mr." + surname);
8 }

Listing 3.3: Source code fragment returned by the summarization algorithm when
applied to the method in Listing 3.2.

these variables. In this case, we consider only the end as a readable variable and select
line 8, since it has an assignment to this variable.

Listing 3.3 shows the source code fragment generated by the proposed summa-
rization algorithm for the method declaration in Listing 3.2. As we can observe, our
algorithm extracted a source code fragment that represents an example of usage of the
java.lang.String.substring(int, int) method. It is also important to mention
that the algorithm ignored the lines responsible for printing the current time (line 13),
because they are not related with the original seed statement.

3.6 Examples Database

The Examples Database represents the last component involved in the preprocessing
phase. Basically, this database stores the examples extracted and summarized during
the previous computation steps. Therefore, during the querying phase, the examples
are not processed anymore. As a result, we have a large gain regarding the performance
of the platform during the querying phase. That is, because the examples are recovered
using a simple SQL query, our approach provides a scalable solution that fits the
requirements of popular API documentations publicly available in the web.

When an example is generated by the summarization algorithm, the Examples
Database stores four data: (a) the source code file from where the example was ex-
tracted; (b) the API method and class the example refers to; (c) the source code line
used as seed by the summarization algorithm; and (d) the slicing representing the
example.

When an end-user asks for examples for a particular method, the APIMiner plat-
form queries this database for examples associated to this method and return them to
the user. However, the Examples Database just contains the extracted examples, with-

34 Chapter 3. Proposed Solution

out any ranking. The ranking algorithm used by the APIMiner platform is presented
in the next section (Section 3.7).

3.7 Ranking Algorithm

This module is responsible for ordering the examples of a given API method, when
the user queries for them. For the sorting process, we have implemented a ranking
criteria based on four metrics: (a) Lines of Code (LOC) of the example; (b) Number of
commits of the example’s source file; (c) Users feedback; and (d) Number of downloads
of the system in a given software repository.

Lines of Code (LOC): The reasoning behind this metric is to give priority to
concise and small examples.

Number of commits: This metric counts the number of commits of the source
code file from where the example has been extracted. With this metric, we intend to
give priority to examples originated from files that have been modified many times,
because generally such files are very important in their system.

To calculate the value of this metric, we need historical information about the
example’s source code file. More specifically, we can apply this metric only to systems
that have a public version control repository. From now, we have implemented this
metric specifically for systems that have an SVN repository.

Number of downloads: This metric evaluates the popularity of the system
from where the example was extracted. The intuition behind this metric is similar to
that considered in the Number of Commits metric. A higher number of downloads
indicates that the system is widely used and that it has an active community. With
an active community around it, users frequently post bugs and request improvements.
For this reason, these systems tend to come from well-known companies and organiza-
tions, with a well-defined software development process and skilled programmers. In
summary, we believe that popular systems, in broad terms, tend to have high levels of
external and internal software quality.

The number of downloads is available only for systems available in well-known
software repositories (such as SourceForge, Google Play Store, etc.). Therefore, this
metric needs to be manually retrieved from such repositories and inserted in our
Systems Database.

3.7. Ranking Algorithm 35

Figure 3.4: An example of user feedback

Users Feedback: This metric takes into consideration the feedback from the
users of the APIMiner platform to rank the examples. Therefore, the value of the
Users Feedback metric may vary overtime, since it is informed by the users of the
platform. The dynamic nature of this metric allows that the community itself defines,
along the time, which examples are more relevant.

When a user decides to provide a feedback for a specific example, he should fills
a feedback form, which can be viewed in Figure 3.4. As we can observe, the feedback
form has two fields: (a) Evaluation field, which is mandatory; and (b) Comment field,
which is optional. The Evaluation field represents a rate the user can give to the
example, ranging from one to five stars. The Comment field provides a comment that
the user can associate to the provided rate.

Whenever an example is recovered, the APIMiner platform recovers the feedback
rates related to it and calculates their average. This average represents the value of
the Users Feedback metric.

To calculate the final ranking score of a given example, we first normalized the
results returned by the mentioned metrics with a value that ranges from 0 to 10.
Second, we apply a weight factor w to each metric value to give more relevance to
specific metrics. With this weight factor, the APIMiner administrator can select which
metric is more important in a particular instantiation of the APIMiner platform.

36 Chapter 3. Proposed Solution

Third, we applied a simple weighted average over the values obtained from the metrics,
as follows:

examplerating =
(loc× wloc) + (comm× wcomm) + (down× wdown) + (feed× wfeed)

(wloc + wcomm + wdown + wfeed)
(3.1)

Examples with a high examplerating value are presented first to the end-users.

3.8 JavaDoc Documentation

The JavaDoc component is the interface for communication between the API user and
the APIMiner platform. Essentially, APIMiner’s JavaDoc interface is similar to the
original JavaDoc. The difference relies on the presence of Example buttons inserted
by APIMiner in the original documentation to show the examples provided by the
platform.

As observed in Figure 3.2, APIMiner instruments the original JavaDoc by adding
a list of Example buttons next to the list of public methods of the target class. Also,
there is a small label below each button, which indicates how many examples the
platform provides for the associated method. Both components were automatically
added using an HTML parser—called Jericho HTML parser2.

When the user clicks on an Example button, a pop-up window appears to show
the examples provided by the platform. Figure 3.5 shows the example window after
the user clicks on the Example button associated to vibrate(long) method.

As we can observe, the example pop-up window is divided in three regions: (a)
header, which contains general information about the current example; (b) body, which
shows the example source code; and (c) footer, which contains buttons for navigation
in the list of examples.

The header region also has a second tab, called Comments, that shows in detail
the ratings and comments associated to the current example. Also, in the right side of
the window (next to the Close button), a dropdown list shows the ranking position of
the current example. For instance, in Figure 3.5 we are showing the first example of
the list.

The body region presents the examples extracted in the preprocessing phase.
Additionally, we have used a syntax-coloring library to highlight the source code to
ease its comprehension. The line in bold emphasizes the statement that contains the

2http://jericho.htmlparser.net/docs/index.html

http://jericho.htmlparser.net/docs/index.html

3.9. Final Remarks 37

Figure 3.5: Example popup window for the vibrate(long) method

API method call, which is also the statement used as seed by the Summarization
process (Section 3.5).

The footer region contains four buttons. The left corner includes navigation
buttons, which are used to browse the examples in the list. The right corner contains
two buttons that provide additional functionalities. The Full Code button shows
the complete source code file from where the example was extracted. The Evaluate

button triggers another pop-up window, where the user can rate the current example
(Figure 3.4).

3.9 Final Remarks

This chapter presented in details the solution proposed in this Master dissertation
to instrument traditional JavaDocs with examples of usage. More specifically, we
implemented a tool that extends traditional APIs documentation by providing real
examples of usage for their public methods, called APIMiner.

As input, APIMiner receives a list of methods of a given API and a list of systems
that use this API. As output, APIMiner provides a JavaDoc-based interface where users
can request examples of usage for each API method. The design followed in APIMiner
presents two distinguishing characteristics: (a) the tool was designed to achieve scala-

38 Chapter 3. Proposed Solution

bility, because the platform first pre-processes the given API by extracting and storing
the examples in an internal database; and (b) APIMiner includes an implementation of
a summarization algorithm—based on a static slicing algorithm—that extracts small
and concise code snippets, that represent meaningful examples of usage.

Chapter 4

Android APIMiner

4.1 Overview

We have implemented a particular instance of the APIMiner platform for the Android
API, called Android APIMiner. As argued by Syer et al. [2011], Android applications
are widely dependent from services provided by the Android API. On average, 30% to
50% of the applications’ source code rely on the Android API, i.e., contain at least a
reference to an element (method, field, etc.) imported from the Android standard API.

Therefore, to implement Android applications, developers must know in details
how the Android API works. In order to ease the learning process, Google provides a
detailed JavaDoc that documents the API elements. However, due to JavaDoc com-
plexity and lack of examples, the learning curve is still a problem for novice developers.

This context constitutes an interesting scenario for evaluating our APIMiner ap-
proach. More specifically, in this chapter we report two studies designed to evaluate
an instance of APIMiner targeting the Android API. Basically, in the first study we
have collected and analyzed usage data regarding an open version of APIMiner, such
as number of access, number of page views, most queried examples, etc. The second
study reports a controlled experiment performed with 17 subjects to evaluate An-
droid APIMiner’s effectiveness in comparison with the traditional Android documen-
tation. More specifically, the subjects have implemented two Android-based mainte-
nance tasks, one accessing the traditional JavaDoc, and another accessing the JavaDoc
instrumented by APIMiner.

The remainder of this chapter is organized as follows. Section 4.2 introduces the
Android API. Section 4.3 provides information about the Android APIMiner instance.
Finally, Section 4.5 and Section 4.6 present two studies that have been performed to
evaluate Android APIMiner.

39

40 Chapter 4. Android APIMiner

4.2 Android API

Android is an open-source platform for mobile devices maintained by Google. The first
version of the Android platform was launched in 2007, and currently the platform is
on its 11th version. Nowadays, Android represents the most popular mobile platform,
with around 700,000 registered applications on Google Play, and more than a million
Android phones activations by day1.

Internally, the Android platform relies on the Linux Kernel and on an specific
virtual machine (VM), called Dalvik VM. While the Kernel manages the operating
system, the Dalvik VM is responsible for executing the applications developed for the
platform.

It is important to note that the Dalvik VM relies on a customized version of
the Java language. Regarding the compilation cycle, when an application is built, its
source code is firstly compiled into traditional Java bytecode files (i.e., .class files).
However, before deploying, the bytecode files must be converted into Dalvik-compatible
files (i.e., .dex files). Finally, the .dex files are compressed into a single .apk package.
This package is the application binary file executed by the Android OS.

For developers who implement applications for Android devices, Google provides
a set of libraries with several functionalities, which are available as part of the An-
droid SDK. Basically, these libraries contain resources that implement typical mobile
applications features, such as GUI, storage, security, and communication. Also, a set
of testing and compiling tools is provided by the SDK.

Moreover, Google provides an Eclipse plug-in that facilitates the development
process, called Android ADT. Through Android ADT, developers can access the An-
droid SDK resources from the Eclipse IDE. For example, this plug-in automates many
development steps, such as compiling, deploying, and testing.

Furthermore, the Android SDK provides an extensive API to access Android
resources. In concrete numbers, the Android API has 1,814 classes, distributed in
84 packages. In terms of methods, the entire API includes 14,258 methods. These
numbers were calculated for the version 4.1 of the Android API, which is the version
used by Android APIMiner.

Table 4.1 shows the top 10 classes in number of methods. As we can observe, the
top 10 classes have 1,566 methods, which represent around 11% of the total. Moreover,
these classes are generally related to GUI functionalities. For example, the View class
represents the basic element in a graphical interface component. The TextView class
extends View by providing an specific text output component. The GLES20, GLES10

1According to http://developer.android.com/about/index.html

http://developer.android.com/about/index.html

4.3. Android APIMiner 41

and GLES11Ext classes provide support to OpenGL. The WebView and WebSettings

classes provide functionalities to display web pages. The Activity and Intent classes
are responsible to manage the screens of an application. Finally, the Parcel class
provides features for inter-process communication (IPC).

Class # Methods
android.view.View 345
android.widget.TextView 202
android.opengl.GLES20 188
android.app.Activity 159
android.opengl.GLES10 123
android.content.Intent 122
android.opengl.GLES11Ext 120
android.webkit.WebView 109
android.webkit.WebSettings 99
android.os.Parcel 99
Total 1,566

Table 4.1: Top 10 classes in number of methods

4.3 Android APIMiner

We have implemented a particular instance of the APIMiner platform for the Android
API, called Android APIMiner. Currently, Android APIMiner provides almost 80,000
examples of use for Android API methods. The platform can be accessed publicly in
the following URL: http://apiminer.org. Figure 4.1 shows the main page of this
website.

More precisely, Android APIMiner provides 79,732 examples distributed in 2,494
methods (18%), and 349 classes (19%). These examples have been extracted from
103 popular open-source systems, such as Wordpress and ZXing Barcode Scanner.
Appendix A shows a list with the systems used in the extraction process.

Regarding their size, 60,095 (75%) of the extracted examples have less than
ten lines of code, and 7,964 (10%) have between eleven and fifteen lines of code.
Listing 4.1 illustrates two source code examples extracted and summarized by
Android APIMiner (respectively, for the methods Vibrator.vibrate(int) and
BluetoothAdapter.getDefaultAdapter() methods). The lines in gray have been
discarded by the summarization algorithm, while the lines in black represent the sum-
marized example.

http://apiminer.org

42 Chapter 4. Android APIMiner

Figure 4.1: Main page of Android APIMiner

As a prerequisite, we selected systems that attend three conditions: (a) they are
implemented under an open source license (such as GPL, Apache, etc.); (b) they have
a public source code repository; and (c) they must build without errors. Part of the
systems was selected from a public Android open source application list, available in
the Wikipedia2. The remaining systems were selected from curated developer websites
(such as http://www.xda-developers.com, http://stackoverflow.com, etc.) and
specialized blogs (such as http://sudarmuthu.com).

Figure 4.2 shows the distribution of the source code examples extracted for the
Android API. This distribution is represented as a treemap, whereas the size of the
classes represents their number of methods. Also, the classes are colored according
to the number of examples they provide: white classes have no examples while green
classes have more examples. Additionally, a natural log scale is used to represent the
number of examples in the visualization. The printed version of this treemap is re-
stricted to the top-level packages from the Android API. An interactive visualization
is available at: http://apiminer.org/treemap-examples.html. Using this visual-

2http://en.wikipedia.org/wiki/List_of_open_source_Android_applications.

http://www.xda-developers.com
http://stackoverflow.com
http://sudarmuthu.com
http://apiminer.org/treemap-examples.html
http://en.wikipedia.org/wiki/List_of_open_source_Android_applications

4.3. Android APIMiner 43

1 public boolean onLongClick(View view) {
2 if (mIsSelecting) {
3 return false;
4 }
5 Log.i(AnkiDroidApp.TAG, "onLongClick");
6 Vibrator vibratorManager =
7 (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);
8 vibratorManager.vibrate(50);
9 longClickHandler.postDelayed(startLongClickAction, 300);

10 return true;
11 }

1 public void startDiscovery() {
2 BluetoothAdapter bluetoothAdapter = BluetoothAdapter.getDefaultAdapter();
3
4 if (bluetoothAdapter.isDiscovering()) {
5 bluetoothAdapter.cancelDiscovery();
6 }
7
8 Set pairedDevices = bluetoothAdapter.getBondedDevices();
9 for (BluetoothDevice device : pairedDevices) {

10 mListener.addBondedDevice(device.getName(), device.getAddress());
11 }
12
13 final IntentFilter deviceFoundFilter = new IntentFilter(BluetoothDevice.ACTION_FOUND);
14 mContext.registerReceiver(mReceiver, deviceFoundFilter);
15
16 final IntentFilter discoveryFinishedFilter =
17 new IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);
18 mContext.registerReceiver(mReceiver, discoveryFinishedFilter);
19
20 if (!bluetoothAdapter.isEnabled()) {
21 bluetoothAdapter.enable();
22 }
23
24 bluetoothAdapter.startDiscovery();
25 }

Listing 4.1: Examples of source code examples for the Android API. The text in bold
is included in the example; the text in gray was discarded. The seed of each example
is in italic and bold (line 8 in the first example and line 2 in the second one).

44 Chapter 4. Android APIMiner

ization, it is possible to navigate through the packages, using zoom-in and zoom-out
features to visualize the treemap at different levels of granularity.

As we can observe, the treemap shows that the examples are highly concen-
trated. Popular packages—such as android.app, android.view, android.content,
android.os, and android.widget—are well covered by examples, as indicated by the
high presence of green blocks. On the other hand, we observe that some packages
are poorly covered, even when they have a large number of classes. For instance,
android.test has only 64 examples and android.test.mock has no examples. In
comparison, the android.app package has 10,671 examples distributed in 1,010 meth-
ods. Similarly, despite the fact that android.opengl package has three classes among
the first ten packages with more methods (Table 4.1), it has only 35 examples.

After investigating this fact deeper, we concluded that the packages with many
examples—such as android.app, android.content, android.view—provide services
that are frequently used by any mobile application. On the other side, packages with
specific features—like android.drm, android.test, android.renderscript, etc.—
have a lower number of examples. A similar result was obtained by Parnin et al.
[2012], which confirms our observation. Basically, in this study the authors collected
the posts related with Android in the Stack Overflow website and related them with
elements in the Android API. As a result, the authors conclude that features that are
commonly used by mobile applications are also largely mentioned on Stack Overflow’s
posts.

To verify this assumption, we analyzed in details the distribution of examples
at three different levels: (a) package; (b) class; and (c) method. The results are
summarized in Tables 4.2, 4.3, and 4.4.

Package # Examples
android.content 15,446
android.view 11,664
android.app 10,671
android.widget 9,493
android.os 7,016
android.util 5,710
android.graphics 4,216
android.database 3,648
android.preference 3,038
android.content.res 1,998
Total 72,900

Table 4.2: Top 10 packages in number of examples

4.3. Android APIMiner 45

Figure 4.2: A treemap visualization showing the distribution of the extracted source
code examples along the packages in the Android API

46 Chapter 4. Android APIMiner

Table 4.2 shows the first 10 packages with more examples. As we can observe, the
examples are highly concentrated, since the top 10 packages have 91% of the extracted
examples (the remaining 9% are distributed in 74 packages). As expected, the packages
in this list provide features commonly used when developing Android applications. For
instance, android.content contains features related with content sharing and manage-
ment. The packages android.widget, android.view, and android.graphics are re-
sponsible for features related with GUI concerns. Further, android.database provides
services to manipulate databases. The android.app package contains high-level classes
that abstract the typical Android application life-cycle. The android.os package pro-
vides basic services related to Android OS (like inter-process communication and power
management). The android.util package contains common utility functions, for ex-
ample, date manipulation, number conversions, etc. Finally, android.content.res
contains methods for accessing application’s resources, such as text, media, or other
external files available as application resources.

Class # Examples
android.app.Activity 7,883
android.view.View 7,171
android.util.Log 5,599
android.content.Intent 3,840
android.content.Context 3,729
android.database.Cursor 3,612
android.widget.TextView 3,578
android.content.ContextWrapper 2,817
android.content.SharedPreferences 2,569
android.os.Bundle 2,490
Total 43,288

Table 4.3: Top 10 classes in number of examples

Table 4.3 shows the top 10 classes in number of examples. As expected, the pre-
sented classes belong to the packages listed in Table 4.2. Also, the listed classes have a
behavior similar to the one observed in Table 4.2: the top 10 classes concentrate 54%
of the extracted examples. It is also important to mention that such classes provide
widely used services, such as logging (android.util.Log), GUI (android.view.View
and android.widget.TextView), and basic features (android.app.Activity and
android.content.Intent).

The same behavior has been observed when we analyzed the methods with more
examples, as presented in Table 4.4. From an universe of 14,258 methods, the top 10
methods are responsible for 19% of the source code examples. Similarly, the listed meth-

4.4. Ranking Parameters 47

ods implement functionalities commonly used when developing Android applications.
As observed, both Activity.findViewById(int) and View.findViewById(int)

perform the same action: retrieve an interface component. The methods
Log.d(String, String), Log.i(String, String), and Log.e(String, String)

are used for logging purposes. The methods TextView.setText(CharSequence),
View.setOnClickListener(OnClickListener), and View.setVisibility(int) de-
fine typical attributes in GUI components, such as their visibility and on-click events.
Finally, Context.getString(int) and ContextWrapper.getResources() are used to
retrieve application’s resources.

Method # Examples
android.app.Activity.findViewById(int) 2,900
android.content.Context.getString(int) 2,024
android.widget.TextView.setText(java.lang.CharSequence) 1,908
android.util.Log.d(java.lang.String,java.lang.String) 1,454
android.view.View.setOnClickListener(android.view.View.OnClickListener) 1,326
android.view.View.setVisibility(int) 1,279
android.view.View.findViewById(int) 1,250
android.util.Log.i(java.lang.String,java.lang.String) 1,172
android.content.ContextWrapper.getResources() 1,001
android.util.Log.e(java.lang.String,java.lang.String) 979
Total 15,293

Table 4.4: Top 10 methods in number of examples

4.4 Ranking Parameters

Table 4.5 presents the scores assigned for each range of values of the ranking metrics
considered by APIMiner (i.e., LOC, downloads, commits, and users’ feedbacks). For
instance, examples between 4 and 8 lines of code have the highest score. On the other
hand, examples with more than 10 lines of code have the lowest score. A similar
approach was applied to the number of downloads (examples from systems with more
than 5,000,000 downloads have the highest score) and for the number of commits
(examples from files with more than 100 commits have the highest score).

The feedback of the examples was normalized based on a simple average of their
values. Since such values range from 0 to 5, we calculated the sum of the feedback
values for each example, multiplied the result by 2, and divided it by the number of
feedbacks collected for each example. The resulting value represents the normalized
score for this metric, which is a value that ranges from 0 to 10. The normalized scores

48 Chapter 4. Android APIMiner

(a) Normalized score
for the LOC metric

LOC Score
1 4

2 - 3 5
4 - 8 10
9 - 10 7
≥ 10 0

(b) Normalized score for the Down-
loads metric

Downloads Score
≤ 7,500 0

7,500 - 25,000 2
25,000 - 50,000 3
50,000 - 250,000 4
250,000 - 500,000 5

500,000 - 1,000,000 6
1,000,000 - 2,000,000 7
2,000,000 - 5,000,000 8
≥ 5,000,000 10

(c) Normalized score
for the Commits metric

LOC Score
≤ 5 0

6 - 15 2
16 - 30 4
30 - 60 6
60 - 99 8
≥ 100 10

Table 4.5: Normalized scores for the metrics values used by the ranking algorithm

obtained for each metric are then used in the final ranking algorithm, presented in
Formula 3.1 (Chapter 3).

Regarding the ranking weights, we have defined the following weights: wloc = 4,
wcomm = 2, wdown = 2, and wfeed = 2. That is, we decided to give more priority to
examples that fit our criteria for LOC values.

It is important to mention that the scores and weights used to rank the examples
were given based on our experience and on general guidelines available in the litera-
ture [Robillard and DeLine, 2011]. Therefore, we acknowledge that more studies are
needed to show the quality of our proposed ranking algorithm and constants.

4.5. Field Study 49

4.5 Field Study

We have conducted a field study using the publicly available version of the Android
APIMiner platform, which can be accessed at http://apiminer.org. Our goal was
to identify how the community has used our platform. More specifically, we proposed
the following questions to be answered:

1. How many users accessed Android APIMiner? How much time they spent
in the platform? How many pages they visited?

2. Which locations do the visits to Android APIMiner come from? Which
locations visited the site more frequently?

3. How many examples Android APIMiner provided? Does the number of
examples provided by the platform increased over time? What were the most
requested examples?

4. Do developers search for source code examples? Is there a demand for
source code examples?

To answer these questions, we analyzed usage access data collected from September
14th to January 18th, in a total of four months. The data has been obtained from two
distinct sources: (a) Google Analytics service3, which collected the information related
with APIMiner website access; and (b) a private logging service we have implemented
in our platform. This service logs users events in the system, such as the examples
requested by the users, the examples the users provided feedback to, etc.

Therefore, the data collection procedure used in our field study does not involve
users directly. More specifically, the procedure is obliviousness to the users, since they
are not aware of when and what data is collected. According to Lethbridge et al. [2005],
this kind of procedure can be classified as a second degree data collection technique,
which basically presumes an indirect involvement of the users of a field study during
the data collection phase.

In the following sections we present answers for the aforementioned questions.
Section 4.5.1 and Section 4.5.2 answer the questions related with the number of access
and locations. Similarly, Section 4.5.3 and Section 4.5.4 answer our third and fourth
questions, respectively.

3http://www.google.com/analytics

http://apiminer.org
http://www.google.com/analytics

50 Chapter 4. Android APIMiner

4.5.1 How Many Users Accessed Android APIMiner?

During the time frame considered in our field study, Android APIMiner received a
total of 20,038 visits. As described in Table 4.6, 14,412 (72%) originated from organic
search—i.e., search engine websites like Google, Bing, etc. Moreover, 3,393 (17%) of the
visits originated from referral traffic, which means that the visitor has been redirected
to Android APIMiner from another web site (i.e., from links in blogs, forums, etc).
The remaining 2,233 (11%) visits come from direct access to our platform (i.e., visitors
who typed the Android APIMiner URL directly in their browsers).

Traffic Origin # Visits % Visits
Organic search 14,412 72
Referral traffic 3,393 17
Direct access 2,233 11
Total 20,038 100

Table 4.6: Origin of APIMiner accesses

Figure 4.3 presents the number of visits to Android APIMiner by weeks. In a
general way, we can observe that the number of visits increased consistently. Also,
we observe two weeks with peaks of visits. In both cases, the peaks are due to two
promotion posts on the Reddit website4. In the first case—in the second week of
November—we posted a message about APIMiner in the Java development forum
(/r/java), which has around 14,000 readers. As a result, we received more than 500
visits in this week.

Figure 4.3: Number of visits per week

One month later, we posted a second message in the Reddit website5, this time
in the programming forum (/r/programming), which has around 415,000 readers. As

4http://www.reddit.com
5This message is available at: http://www.reddit.com/r/programming/comments/14nsdo/

apiminer_android_sdk_documentation_with_thousands

http://www.reddit.com
http://www.reddit.com/r/programming/comments/14nsdo/apiminer_android_sdk_documentation_with_thousands
http://www.reddit.com/r/programming/comments/14nsdo/apiminer_android_sdk_documentation_with_thousands

4.5. Field Study 51

a result, the number of visits originated from Reddit jumped from 5 to 1,300 in this
week. In both cases, we received a positive feedback from the community, which
provided interesting suggestions, most of them related to usability issues.

During our field study, Android APIMiner had 42,034 pageviews, resulting on
an average of 2.10 pages/visit. The users remained on the site for an average of 1:28
minutes.

4.5.2 Which Locations do the Visits to Android APIMiner

Come From?

Figure 4.4 depicts the number of visits by showing them in a world map. The level
of the green color determines the number of visits from a given country, i.e., green
countries visited the site many times, while white gray countries did not visit our site.

Figure 4.4: Number of access by country

Table 4.7 presents the top 10 countries in number of visits along with their
Page/Visit ratio. These countries are responsible for 12,029 visits, which represent
60% of the total. As we can observe, Android APIMiner has been accessed from a
large number of different locations. However, three countries concentrate the access:
United States (3,162 visits), India (2,086 visits), and Brazil (1,743 visits). However,
important countries also visited the site frequently, including France (855 visits), Ger-

52 Chapter 4. Android APIMiner

many (827 visits), Japan (777 visits), U.K. (749 visits), South Korea (719 visits), Spain
(577 visits), and Canada (534 visits). In total, Android APIMiner has been accessed
from 130 different countries (and from 3,087 different cities/provinces).

Country # Visits Pages/Visit
United States 3,162 2.50
India 2,086 1.62
Brazil 1,743 3.28
France 855 2.65
Germany 827 2.26
Japan 777 1.71
United Kingdom 749 2.07
South Korea 719 1.63
Spain 577 1.75
Canada 534 2.26

Table 4.7: Top 10 countries in visits

4.5.3 How Many Examples Android APIMiner Provided?

During the four months of our study, the users requested 3,910 examples from Android
APIMiner. However, 1,753 requests (45%) have been made for methods where the
platform has no examples. In other words, Android APIMiner has provided examples
for 2,157 users requests (55%). Furthermore, the number of feedback scores we have
received was not representative. During our field study, we just received feedback for
nine examples.

Figure 4.5 shows the 2,157 example requests provided by Android APIMiner
distributed by weeks. As expected, the distribution is similar to the one presented in
Figure 4.3. Furthermore, the peaks in this figure are also due to the posts at Reddit.
The highest number of examples was provided in the second week of December (due to
our second post at Reddit). In this week, 722 examples have been provided by Android
APIMiner.

We also generated another treemap to visualize the regions of the Android API
with more example requests, as shown in Figure 4.6. As in the previous treemap
(presented in Figure 4.2), the size of the classes are defined by their number of methods.
However, in this second treemap the classes are colored according to the number of
examples they have provided, i.e., green classes have provided more examples and
white classes have provided fewer examples. A natural log scale is used to represent

4.5. Field Study 53

Figure 4.5: Number of examples provided per week

this number. The interactive visualization of this treemap is available at http://

apiminer.org/treemap-requests.html

As we can observe, the distribution of the provided examples (Figure 4.6) does
not follow the distribution of extracted examples (Figure 4.2). A restricted list
of classes has been requested many times, while the remaining classes, even those
with a large number of examples, have been requested few times. Stated otherwise,
there are some packages with a large number of examples that have been requested
many times (e.g., android.app, android.database.sqlite, android.graphics, and
android.widget). However, there are also packages with a small number of exam-
ples that have been requested frequently, e.g., android.location, android.hardware,
android.bluetooth, android.appwidget, and android.accounts. In common, all of
these classes deal with Android peripherals and services.

This behavior remains the same when we analyze the provided examples at a
fine-grained level. We analyzed the top 10 methods requested by the users, as pre-
sented in Table 4.8. As we can observe, none of the listed methods come from any
of the top 10 classes with more examples presented in Table 4.3. Moreover, 30%
of the examples have been requested for methods in the android.widget.Toast

class, which is in 12th position in the number of examples. Also, we can ob-
serve that methods that access peripheral devices and services are often listed,
like Vibrator.vibrate(long), Camera.autoFocus(Camera.AutoFocusCallback),
BluetoothAdapter.cancelDiscovery(), and BluetoothDevice.getName().

4.5.4 Do Developers Search for Source Code Examples?

In order to answer this question, we have analyzed the searching queries informed by
the users when they reached Android APIMiner using a search engine. As mentioned

http://apiminer.org/treemap-requests.html
http://apiminer.org/treemap-requests.html

54 Chapter 4. Android APIMiner

Figure 4.6: A treemap visualization showing the distribution of the examples requested
by the users along the packages in the Android API

4.5. Field Study 55

Method # Examples # Requests
Toast.cancel() 3 25
Toast.makeText(Context,int,int) 309 22
ActionBar.addOnMenuVisibilityListener 1 19(OnMenuVisibilityListener)
Toast.makeText(Context,CharSequence,int) 633 18
Vibrator.vibrate(long) 21 17
AppWidgetHost.allocateAppWidgetId() 6 16
Camera.autoFocus(Camera.AutoFocusCallback) 3 15
Bitmap.compress(CompressFormat,int,OutputStream) 46 15
BluetoothAdapter.cancelDiscovery() 5 14
BluetoothDevice.getName() 6 14

Table 4.8: Top 10 methods in terms of examples requested by the users

in Section 4.5.1, 14,412 visits originated from search engine queries. Due to privacy
issues, Google does not provide search data from logged users6. For this reason, we
had to discard 9,774 visits. The remaining 4,638 visitors have executed 3,660 different
queries.

Keyword # Queries
speechrecognizer wait timeout 53
apiminer 30
datepicker.keep_screen_on 16
eglquerysurface egl_width android resize 15
listpopupwindow example android 15
android.net.rtp example 14
gridlayoutanimationcontroller example 13
android notificationcompat example 12
notificationcompat.builder example 12
fragmentactivity example 11
Total 191

Table 4.9: Top 10 searching queries

Table 4.9 presents the top 10 most frequently used searching queries. As we can
observe, the top 10 queries have been used 191 times (4%). Therefore, unlikely the
results obtained for examples, the queries present a diversified behavior.

We also counted the number of queries containing the example keyword. As a
result, 1,287 of the 3,660 available queries have the example keyword (35%). When
analyzing the top 10 queries, the example keyword is present in six queries. In sum-
mary, the example keyword has been used frequently by the users, which reinforces our

6More details about this privacy issue is available at: http://analytics.blogspot.co.uk/2011/
10/making-search-more-secure-accessing.html

http://analytics.blogspot.co.uk/2011/10/making-search-more-secure-accessing.html
http://analytics.blogspot.co.uk/2011/10/making-search-more-secure-accessing.html

56 Chapter 4. Android APIMiner

initial claim that developers usually search for source code examples when accessing
the documentation of an API.

4.6 Controlled Experiment

In order to better understand the benefits and the drawbacks of our platform, we con-
ducted a controlled experiment where 17 subjects have used APIMiner. The objective
of this experiment is to measure the gain provided by Android APIMiner in compari-
son with the traditional Android documentation. More specifically, we proposed this
experiment in order to answer the following question:

Do the examples provided by APIMiner help developers to implement maintenance
tasks?

To shed light on this question we have created a simple Android application. How-
ever, we separated two features to be implemented by our subjects. As a restriction,
the subjects have been asked to implement one task accessing only the documentation
provided by Android APIMiner, and another task accessing the Android traditional
JavaDoc. Basically, during the experiment we monitored the subjects and recorded
the ones which successfully implemented the provided tasks.

This section is organized in the following way. Section 4.6.1 explains in details
the application used in the experiment as well as the maintenance tasks assigned to
the subjects. Section 4.6.2 shows how the experiment was configured and Section 4.6.3
describes how it was executed. Finally, Section 4.6.4 describes our findings after the
experiment.

4.6.1 More Aqui

More Aqui is an Android application we have implemented to help users who are
looking for properties on sale. Basically, the application works as an agenda that
registers properties on sale which could interest the user. A typical scenario is as
following: the user is walking in the city when he sees an ad for a property. The
user opens the application and fills the information related to the property, such as
the phone number and its size. The application then saves the information provided
by the user and the property’s location, which is collected automatically from the
smartphone’s GPS.

4.6. Controlled Experiment 57

(a) Main screen (b) Registration screen (c) Listing screen

Figure 4.7: Screenshots from More Aqui

The application has three screens: (a) main screen, as presented in Figure 4.7(a);
(b) registration screen, used to register a property of interest (as presented in Figure
4.7(b)); and (c) listing screen, which lists the properties that have been registered (as
presented in Figure 4.7(c)).

We selected three maintenance tasks to be implemented by the subjects in the
experiment. As prerequisites, we defined tasks that represent simple and objective
programming tasks, and that require calling methods from the Android API with
source code examples extracted by APIMiner. Moreover, we defined maintenance tasks
with different levels of complexity. The selected maintenance tasks are described in
the following:

• Adding an OnClick event to the main screen’s buttons: This task aims
to add OnClick events to the buttons New and Show in the main screen.

• Screen’s transition: This task aims to implement the transition from the Main
screen to the Registration and Listing screens.

• Persisting a record in the database: This task aims to implement the code
that saves a property record in the database.

Regarding their complexity, the first and second tasks are considered easy tasks,
because they involve few and simple interactions with the Android API. On the other
hand, the third task is more difficult, because it involves a larger number of classes and

58 Chapter 4. Android APIMiner

methods. In fact, only the second and third tasks were used in the experiment. The
first task was only used in a tutorial stage, i.e., used to explain the experiment to the
subjects (as discussed in details in the next section).

4.6.2 Experiment Setup

We selected 17 subjects to conduct the experiment. The selected subjects had the
following prerequisites: (a) good programming skills in the Java language; and (b) no
proficiency in the Android platform. The selection was based on information provided
by the subjects. We checked this information using a form distributed before the
execution of the experiment. This form can be found at Appendix B.1.

The experiment was performed in a university laboratory, with 20 computers
with the following configuration: Dell Optiplex 790 with Intel Core I3 3.30 GHz, 8
GB RAM, 1 TB of HD, and Windows 7 Professional 64 bits. We also configured the
environment by installing an Eclipse IDE with the Android ADT and the Android
SDK platforms. A pre-defined workspace was configured in each computer, with the
Eclipse projects the subjects should work around.

We defined that the tasks should be executed in order, with a time limit of
20 minutes for each task. Additionally, we distributed a descriptive sheet with the
information necessary to implement each task, including the variables, methods, and
classes to use, and the link to the corrected documentation. It is important to mention
that the subjects were instructed to access the documentation only using the link
provided in the descriptive sheets. The sheets for the three tasks are included in the
Appendix B.2.

Regarding the tasks implementation, we followed a crossover methodology. In
this methodology, we divided the subjects in groups A and B. Group A implemented
the first task accessing only the traditional Android documentation and the second
task accessing the documentation provided by Android APIMiner. In contrast, group
B implemented the first task accessing the Android APIMiner and the second task
accessing the traditional Android documentation.

4.6.3 Experiment Execution

Due to subjects availability, we divided the experiment in two sessions. However, both
sessions were executed in the same way. First, we gave a brief introduction on Android
development, highlighting the main topics the subjects should know to implement the

4.6. Controlled Experiment 59

tasks. Among these topics, we showed how to use the development tools and discussed
some basic concepts of Android development.

Also, we implemented the tutorial task—mentioned in Section 4.6.1—with the
subjects. Basically, the following methodology was proposed to implement the tasks:
(a) we initially showed how the application works before the task’s implementation
and how it should work after its implementation; (b) the subjects were instructed to
read the task form to understand what methods should be used; (c) the subjects were
instructed to access the provided documentation links to understand how the suggested
methods work and how to call them; (d) the subjects were instructed to implement
the task based on the information available in the documentation; and (e) they finally
were instructed to test the application to check whether everything is correct.

After this introduction, we notified the subjects about the beginning of the exper-
iment, which implies that no more questions were answered. For each task, we applied
the aforementioned steps (a) and (b). Also, we asked the subjects to fill the task’s
starting time in the task form. Then we start counting the time limit to implement
the task. As the experiment is synchronized, we asked the subjects who finished the
task before the time limit to fill the finish time field in the task form and to wait for
new instructions. When the time limit was reached, we asked the remaining subjects
to stop their implementation and to put a dash in the task’s finish time. Then, we
seated with each subject and checked their implementation. We also fixed the imple-
mentation in case of errors or missing code. In general, the sessions lasted for 1:40
hours approximately, including 30 minutes on the tutorial part and 50 minutes on the
implementation part.

4.6.4 Experiment Results

From 17 subjects, only six implemented at least one task (35%). When investigat-
ing why few subjects were able to implement the proposed tasks, we figure out that
many subjects have had difficulties in adapting to the programming model followed by
mobile applications, which they considered very different from standard, non-mobile
applications. Table 4.10 shows the number of subjects that implemented the tasks with
Android APIMiner and with the traditional documentation.

Regarding the Screen Transition task, from five subjects who completed the task,
four used Android APIMiner. Considering the Database Insertion task, from four
subjects who completed the task, only one used APIMiner. After investigating this
result, we discovered that the three subjects who completed the task without APIMiner
are highly skilled Java developers, with a solid experience in frameworks and web

60 Chapter 4. Android APIMiner

Task Android APIMiner Traditional JavaDoc
Screen Transition 4 1
Database Insertion 1 3
Total 5 4

Table 4.10: Number of subjects who implemented each task

development.
Furthermore, the Database Insertion task has proved itself to be more com-

plex, because it requires calling various methods from distinct API classes. As il-
lustrated in Listing 4.2, this task requires calling three methods in a well-defined se-
quence. First, developers need to call SQLiteOpenHelper.getWritableDatabase, to
retrieve a writable database (line 1). Next, a sequence of ContentValues.put calls
are used to fill the data that will be stored in the database (lines 4 - 9). Finally,
the SQLiteDatabase.insertOrThrow method is used to persist the values previously
stored (line 11). Therefore, examples for individual methods—such as those provided
by APIMiner—did not help subjects who had not previous experience with Java-based
persistence frameworks.

1 SQLiteDatabase db = estatesDb.getWritableDatabase();
2 ContentValues values = new ContentValues();
3
4 values.put(DBConstants.PHONE, estate.PHONE);
5 values.put(DBConstants.SIZE, estate.SIZE);
6 values.put(DBConstants.STATUS, estate.STATUS);
7 values.put(DBConstants.TYPE, estate.TYPE);
8 values.put(DBConstants.LAT, estate.LAT);
9 values.put(DBConstants.LONG, estate.LONG);

10
11 db.insertOrThrow(DBConstants.TABLE_NAME, null, values);

Listing 4.2: Source code for the Database Insertion task

4.6.5 Threats to Validity

We have identified at least three issues that represent possible threats in this study.
First, we split the experiment in two sessions. However, both sessions were executed in
the same scenario and conducted by the same leaders. Second, the lack of knowledge
related with Android’s basic concepts may have impacted the subjects’ performance.
However, we gave an introduction covering all the necessary topics to implement the

4.7. Final Remarks 61

tasks. Third, our tasks and our target application may not be representative enough
to cover how real-world developers use the Android API and its documentation.

4.7 Final Remarks

In this chapter, we presented a particular configuration of the APIMiner platform for
the Android API, called Android APIMiner. In general numbers, Android APIMiner
provides 79,732 source code examples extracted from 103 open-source Android applica-
tions. Moreover, we have conducted two studies to evaluate Android APIMiner. First,
we have performed a field study based on usage data collected after four months of
use by real users. By analyzing this data, we could understand the benefits and draw-
backs of our current solution. Currently, 20,038 users have visited Android APIMiner,
generating 42,034 page views. Also, the platform has provided 2,157 source code ex-
amples to such users. Second, we have conducted a controlled study to investigate
Android APIMiner effectiveness, using a simple Android application that lacks two
features the subjects have been asked to implement. As a result, we observed that
Android APIMiner helps to solve specific programming tasks, which comprise few API
elements. On the other hand, Android APIMiner may not help to solve more com-
plex tasks, which comprise the call of several methods from different and not explicitly
connected classes.

Chapter 5

Conclusions

5.1 Contributions

APIs constitute a reuse technology widely adopted in modern software development.
However, the use and application of current APIs generally require a non-trivial effort.
More specifically, the poor quality of APIs’ documentation is a major obstacle for their
use. Furthermore, recent empirical studies indicate that source code examples are an
essential instrument to ease and to make more productive the use of APIs [McLellan
et al., 1998; Robillard, 2009; Robillard and DeLine, 2011; Buse and Weimer, 2012].
However, there is still no consensus on how source code examples can be added to
current API documentation formats, like JavaDoc.

To tackle this problem, we presented in this master dissertation the APIMiner
platform, which relies on a private and curated database of source code examples
to enrich APIs documentation in the JavaDoc format. The source code examples
are extracted from a private source code repository and summarized using a static
slicing algorithm. To demonstrate and evaluate our approach, we have implemented a
particular instance of our platform for the Android API, and performed two studies to
evaluate this instance: a large-scale field study and a small but controlled experiment.

More specifically, this master dissertation presents the following contributions:

1. We designed and implemented a platform that instruments APIs documentation
in the JavaDoc format with source code examples extracted from a private repos-
itory. Furthermore, we have implemented a summarization algorithm—based on
static slicing—that extracts small but relevant source code examples.

2. We have implemented and configured a particular version of the APIMiner plat-
form for the Android API, with 79,732 source code examples extracted from 103

63

64 Chapter 5. Conclusions

open-source applications. From such examples, 60,095 (75%) have less than 10
lines of code. Android APIMiner is publicly available at http://apiminer.org.

3. We have conducted a large-scale field study using the Android API version of the
platform, when professional Android developers accessed the system during four
months. After this period, the platform has been accessed 20,038 times from 130
different countries, generating more than 42,000 page views. Also, the platform
has provided 2,157 source code examples to such users.

4. We have conducted a controlled experiment involving 17 subjects that imple-
mented maintenance tasks in a small Android application with the assistance of
the source code examples provided by APIMiner. We observed that the examples
provided by APIMiner helped to solve specific programming tasks, which com-
prise few and connected API elements. On the other hand, the current examples
provided by APIMiner are less useful to solve complex tasks, which require the
implementation of more complex programming protocols.

5.2 Comparison with Related Work

Table 5.1 compares existing API recommendation tools with APIMiner. Code Search
Engines (CSEs) represent the simplest approach regarding examples recommendation,
as they provide examples without any structural preprocessing [Holmes et al., 2006;
Zhong et al., 2009; Duala-Ekoko and Robillard, 2011]. IDE-based tools can explore the
syntactic context provided by the IDE to recommend more relevant examples. However,
the examples provided by such tools are not documentation-focused. Furthermore,
IDE-based tools are restricted to the IDE they have been implemented to.

In counterpart, JavaDoc-based tools are designed and implemented to be inde-
pendent from IDEs and usually are publicly accessed from the web (as APIMiner).
Despite these characteristics, the available tools lack features that prevent them from
replacing the original documentation. In fact, eXoaDocs is the tool with more resources
similar to the ones proposed in APIMiner [Kim et al., 2009, 2010]. However, the pro-
cess behind eXoaDocs’ examples extraction—as well as the process used by the tool
to instrument JavaDocs—can be improved in several aspects. For instance, eXoaDocs
extracts examples from the web and summarizes them using only data dependencies.
Moreover, the instrumented JavaDoc must be regenerated whenever a new source code
example is processed. On the other hand, APIMiner relies on a curated source code
repository and on a slicing algorithm that considers both data and control dependen-
cies. Furthermore, in order to provide examples APIMiner requires the insertion of

http://apiminer.org

5.3. Future Work 65

Category System Input Interface Output
CSEs CSEs Text Web File

IDE
Tools

Strathcona Statement Plugin Method
API Explorer Statement Plugin —

MAPO Statement Plugin Method

JavaDoc
Tools

ExoaDocs Method Web Slicing
APIExample Type Web/Plugin Text
PropER-Doc Type Desktop Method
APIMiner Method Web Slicing

Category System Repository Clustering Ranking
CSEs CSEs Web — �

IDE
Tools

Strathcona Private — �
API Explorer Private — —

MAPO Private � �

JavaDoc
Tools

ExoaDocs Web � �
APIExample Web � �
PropER-Doc Web � �
APIMiner Private �

Table 5.1: Comparison between APIMiner and other API recommendation systems

a single button in a standard API documentation. Finally, we have evaluated our
platform in the field, using a complex and widely popular API.

5.3 Future Work

As concluded from the results of the controlled experiment (Section 4.6.4), APIMiner
provides less help in programming scenarios that require the call of several distinct
and non-connected API methods. The reason is that in this case the examples have to
reveal more complex API usage patterns, i.e., a sequence of multiple statements that
must be called in a pre-defined order.

Therefore, we recommend the investigation of a solution that extends the current
platform to identify and extract source code examples representing more complex APIs
usage patterns. More specifically, we recommend the use of data-mining techniques—
like association rules [Agrawal et al., 1993a,b]—to identify these patterns and to use
an extended version of the summarization algorithm to extract them.

Furthermore, in some cases the examples extracted by APIMiner are not exactly
legible, e.g., in some cases the examples have a large and complex set of statements.

66 Chapter 5. Conclusions

Among other reasons, this happens mainly due to the nature of the slicing process.
Because this process lacks information related with the underlying program semantics,
the slicing technique can not distinguish relevant and irrelevant details of the examples.
Therefore, we intend to investigate more sophisticated approaches to extract source
code examples that might be more intuitive to developers, as the approach proposed
by Buse and Weimer [2012].

Bibliography

ACM (2009). 9th ACM International Conference on Recommender Systems.
http://recsys.acm.org/2009/.

Agrawal, R., Imieliński, T., and Swami, A. (1993a). Mining association rules between
sets of items in large databases. In ACM SIGMOD International Conference on
Management of Data, volume 22, pages 207–216.

Agrawal, R., Imieliński, T., and Swami, A. (1993b). Mining association rules between
sets of items in large databases. ACM SIGMOD Record, 22(2):207–216.

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In 11th International
Conference on Data Engineering (ICDE), pages 3–14.

Aragon Consulting Group (2006). Krugle open search. http://www.krugle.org/.

Baeza-Yates, R. and Ribeiro-Neto, B. (2008). Modern information retrieval. Addison-
Wesley, USA, 2nd edition.

Black Duck Software (2004). Ohloh, the open source network. https://www.ohloh.net/.

Black Duck Software (2008). Koders code search engine. http://koders.com/.

Buse, R. P. L. and Weimer, W. (2012). Synthesizing API usage examples. In 34th
International Conference on Software Engineering (ICSE), pages 782–792.

Codase (2005). Codase: Source code search engine. http://www.codase.com.

Duala-Ekoko, E. and Robillard, M. P. (2011). Using structure-based recommendations
to facilitate discoverability in APIs. In 25th European Conference on Object-Oriented
Programming (ECOOP), pages 79–104.

Eclipse Foundation (2011). Eclipse Code Recommenders.
http://www.eclipse.org/recommenders/.

67

68 Bibliography

Google (2006). Google code search. http://code.google.com/codesearch.

Harman, M. and Hierons, R. (2001). An overview of program slicing. Software Focus,
2(3):85–92.

Holmes, R. and Murphy, G. C. (2005). Using structural context to recommend source
code examples. In 27th International Conference on Software Engineering (ICSE),
pages 117--125.

Holmes, R., Walker, R. J., and Murphy, G. C. (2006). Approximate structural context
matching: An approach to recommend relevant examples. IEEE Transactions on
Software Engineering, 32(12):952–970.

Jexamples (2005). Jexamples: Java examples in open source code.
http://www.jexamples.com/.

Kim, J., Lee, S., won Hwang, S., and Kim, S. (2009). Automatic generation of example
oriented API documents. In 24th International Conference on Automated Software
Engineering (ASE).

Kim, J., Lee, S., won Hwang, S., and Kim, S. (2010). Towards an intelligent code
search engine. In 24th Conference on Artificial Intelligence (AAAI).

Lethbridge, T. C., Sim, S. E., and Singer, J. (2005). Studying software engineers:
Data collection techniques for software field studies. Empirical Software Engineering,
10(3):311–341.

Mandelin, D., Xu, L., Bodík, R., and Kimelman, D. (2005). Jungloid mining: helping
to navigate the API jungle. In 2005 Conference on Programming Language Design
and Implementation (PLDI), pages 48–61.

Mar, L. W., Wu, Y.-C., and Jiau, H. C. (2011). Recommending proper API code
examples for documentation purpose. In 18th Asia Pacific Software Engineering
Conference (APSEC), pages 331–338.

McLellan, S. G., Roesler, A. W., Tempest, J. T., and Spinuzzi, C. (1998). Building
more usable APIs. IEEE Software, 15(3):78–86.

Michail, A. (2001). Code web: data mining library reuse patterns. In 23rd International
Conference on Software Engineering (ICSE), pages 827–828.

Bibliography 69

Nagappan, N., Ball, T., and Zeller, A. (2006). Mining metrics to predict component
failures. In 28th International Conference on Software Engineering (ICSE), pages
452–461.

Parnin, C., Treude, C., Grammel, L., and Storey, M.-A. (2012). Crowd documenta-
tion: exploring the coverage and the dynamics of API discussions on stack overflow.
Technical report, Georgia Tech, College of Computing.

Robillard, M., Bodden, E., Kawrykow, D., Mezini, M., Tristan, and Ratchford (2012).
Automated API property inference techniques. IEEE Transactions on Software En-
gineering, PP(99).

Robillard, M. P. (2009). What makes APIs hard to learn? Answers from developers.
IEEE Software, 26(6):27–34.

Robillard, M. P. and DeLine, R. (2011). A field study of API learning obstacles.
Empirical Software Engineering, 16:703–732.

Robillard, M. P., Walker, R., and Zimmermann, T. (2010). Recommendation systems
for software engineering. IEEE Software, 27(4):80–86.

Syer, M. D., Adams, B., Zou, Y., and Hassan, A. E. (2011). Exploring the develop-
ment of micro-apps: A case study on the BlackBerry and Android platforms. IEEE
International Workshop on Source Code Analysis and Manipulation (SCAM), pages
55–64.

Thummalapenta, S. and Xie, T. (2007). Parseweb: a programmer assistant for reusing
open source code on the web. In 22nd International Conference on Automated Soft-
ware Engineering (ASE), pages 204–213.

Wang, L., Fang, L., Wang, L., Li, G., Xie, B., and Yang, F. (2011). APIExample:
An effective web search based usage example recommendation system for Java APIs.
In 26th International Conference on Automated Software Engineering (ASE), pages
592–595.

Weiser, M. (1981). Program slicing. In 5th International Conference on Software
Engineering (ICSE), pages 439–449.

Weiser, M. (1984). Program slicing. IEEE Transactions on Software Engineering,
10:352–257.

70 Bibliography

Ye, Y. and Fischer, G. (2005). Reuse-conducive development environments. Automated
Software Engineering, 12(2):199–235.

Zhong, H., Xie, T., Zhang, L., Pei, J., and Mei, H. (2009). MAPO: Mining and
recommending API usage patterns. In 23rd European Conference on Object-Oriented
Programming (ECOOP), pages 318–343.

Zimmermann, T., Weisgerber, P., Diehl, S., and Zeller, A. (2004). Mining version
histories to guide software changes. In 26th International Conference on Software
Engineering (ICSE), pages 563–572.

Appendix A

List of Android Systems

Table A.1 presents the list of open source Android systems that have been registered on
Android APIMiner’s repository. The following information is presented for each system:
(a) the category of the system in Google Play, if applied; (b) a briefly description of
the system; (c) number of downloads in Google Play; and (d) number of examples
provided by the system.

Table A.1: List of Android systems used in the repository of Android APIMiner

System Category Description Downloads Examples
4Chan Image Browser Entertainment Image browser 25,000 84
aCal Productivity Calendar client 2,500 4,575
ADW Launcher — Launcher — 2,796
Alien Blood Bath — Shooter game — 312
Andless Media/Video Audio player 250,000 767
Android Launcher Plus — Launcher — 1,238
Android Metronome — Metronome — 52
Android motion detection — Motion detection framework — 47
Android’s Fortune Entertainment Based on “Fortune” 25,000 713
AndroSens Lib/Demo Data collector 7,500 169
Andtweet Social Twitter client 25,000 1,145
Ankidroid Education Flashcards spaced-repetition 250,000 3,914
Announcify Business Reads the caller’s name 250,000 126
APG Communication Public key encryption tool 75,000 1,636
APNdroid Tools Mobile data Switcher 25,000 33
Aptoide Client — Application installer — 3,175
Aptoide Uploader — Application uploader — 487
ARViewer Social Augmented reality 2,500 1,136
Audalyzer Tools Audio analyzer 250,000 51
AR framework — AR framework — 209
Banshee Remote Media/Video Remote control for Banshee 25,000 243
Barcode Scanner Shopping Barcode reader 75,000,000 801

Continued on next page

71

72 Appendix A. List of Android Systems

Table A.1—continued from previous page
System Category Description Downloads Examples

BatteryTracker — Battery sensor — 43
Big Planet Tracks — Offline GPS tracker — 699
Broadcast Dumper — — — 19
Chime Timer Tools Timer 2,500 119
CIDR Calculator Tools IP subnet calculator 75,000 380
Clusterer — Cluster management module — 67
ConnectBot Communication SSH client 2,500,000 1,437
Contact Owner Tools Contact info on widget 250,000 177
Corporate Addressbook Communication Address book 250,000 438
Countdown Alarm Productivity Timer 7,500 178
Crowdroid Social Twitter client 7,500 8,229
Cyanogen Updater — Cyanogen mod updater — 1,140
Dazzle Tools Switcher widget 75,000 334
Dialer2 Productivity T9 dialer search 75,000 453
Exchange OWA — Mail client —- 148
FeedGoal News RSS reader 2,500 834
FFVideoLiveWallpaper — Live wallpaper — 76
Floating Image Entertainment Image streamer 2,500,000 1,373
Formula — Calculaton — 169
Frozen Bubble Casual Tetris style game 2,500,000 310
GCal Call Logger Communication Sync client 7,500 109
GCstar Scanner Tools Barcode scanner 2,500 21
GCstar Viewer Tools Personal collections manager 2,500 245
Hermit Android — — — 666
Hot Death Cards/Casino Uno style game 25,000 454
K9 Mail Communication Email client 2,500,000 4,737
Keepassdroid Tools Passphrase manager 750,000 725
Lexic Brain/Puzzle Word-grid game 75,000 437
LibreGeoSocial Social Social network with AR 2,500 2885
MandelBrot Lib/Demo Fractal viewer 2,500 225
MemorizingTrustManager — SSL/TLS library — 44
MINDroid Communication Lego Mindstorms controller 75,000 434
Mnemododo Education Flashcards spaced-repetition 750 306
Mustard Social Microblog client 25,000 2,093
Nethack Android Brain/Puzzle Nethack game 75,000 1,004
Newton’s Cradle Lib/Demo Physics of Newton’s Cradle 750,000 111
OI About — “About” box library — 161
Open WordSearch Brain/Puzzle Word search game 2,500,000 635
OpenMap framework — OpenMap framework — 51
OpenSudoku Brain/Puzzle Sudoku game 2,500,000 972
Orbot Communication Tor proxy 250,000 692
Password Hash Tools Password hash 2,500 61
Pedometer Health Counts your steps 250,000 174
Picture Map Media/Video Geotagged photos 25,000 57
Plughole — — — 212
PMix Media/Video MPD client 25,000 457
Replica Island Arcade/Action 2D side scrolling game 2,500,000 598
Ringdroid — Ringtone creator — 609

Continued on next page

73

Table A.1—continued from previous page
System Category Description Downloads Examples

robotfindskitten Casual Port of robotfindskitten 25,000 95
Scrambled Net Full Brain/Puzzle Puzzle game 750,000 262
Secrets — Secret storage application — 401
Shortyz Brain/Puzzle Crossword puzzle client 2,500,000 765
Shuffle — GTD application — 1,417
Simon Tatham’s puzzles Brain/Puzzle Puzzle game 250,000 549
Sipdroid Communication SIP client 750,000 1,441
SL4A — Scripting Layer — 2,152
Slashdot — Slashdot reader — 94
SMS Backup Plus Tools Backup application 2,500,000 735
Sokoban Brain/Puzzle Warehouse puzzle game 75,000 134
Solitaire Collection — Collection of card games — 384
Spell Dial Tools T9 search dialer 250,000 114
Substrate Personalization Live wallpapers 250,000 211
SuperGenPass — Password hasher — 251
Swallow Catcher — Podcast client — 354
Swiftp — FTP server — 171
Target Brain/Puzzle Anagram word puzzle 25,000 393
Test Card — — — 40
Tippy Tipper — Tipping calculator — 261
TouchTest — Touch test — 85
Tricorder — Tricorder — 431
Tumblife — Tumblr client — 258
Twisty Brain/Puzzle Z-machine emulator 75,000 231
Twitli — Twitter client — 2,737
Vector Pinball Arcade/Action Pinball game 75,000 63
Vidiom Media/Video Mobile video publishing tool 75 966
Voyager Connect — In-vehicle network diagnostic — 23
Watch Aids — — — 30
Wiki Dici — Wikitionary — 42
Word Seek Brain/Puzzle Word search game 7,500 392
Wordpress Social Wordpress client 2,500,000 2,949
XBMC Remote Media/Video XBMC Remote control 750,000 1,794

Table A.2 shows the list of the considered Android systems that are under sub-
version control system (SVN) and their respective number of commits.

Table A.2: Android systems with SVN repository

System # Commits
Alien Blood Bath 78
Andless 67
Android Launcher Plus 44
Android Metronome 2
AndroSens 34

Continued on next page

74 Appendix A. List of Android Systems

Table A.2—continued from previous page
System # of Commits

APG 111
Audalyzer 47
Augmented Reality Framework 117
Barcode Scanner 628
BatteryTracker 3
CIDR Calculator 36
Clusterer 7
Contact Owner 4
Corporate Addressbook 3
Countdown Alarm 13
Cyanogen Updater 592
Dazzle 57
Exchange OWA 29
FeedGoal 159
Floating Image 124
Formula 9
Frozen Bubble 21
GCstar Scanner 3
GCstar Viewer 19
Hermit Android 32
Hot Death 24
LibreGeoSocial 932
MandelBrot 134
Motion Detection Framework 28
Nethack Android 333
Newton’s Cradle 39
OpenMap Framework 13
OpenSudoku 10
Plughole 27
PMix 55
Replica Island 7
Ringdroid 33
Secrets 118
Shuffle 155
Sipdroid 279
Solitaire Collection 30
Spell Dial 15
Substrate 58
Target 36
TouchTest 18
Tricorder 119
Wordpress 772
Word Seek 17

Appendix B

Forms Used in the Controlled Study

75

76 Appendix B. Forms Used in the Controlled Study

B.1 Information Form

Formulário – Experimento Controlado APIMiner

1. Nome: __

2. Curso/Semestre: ___

3. E-mail: __

4. Marque os cursos/disciplinas que você já fez, ou então se tais conteúdos foram dados em conjunto
com algum dos cursos que você fez.

[] Programação orientada a objetos [] Programação Java

[] Programação Android [] Sistemas de banco de dados

[] Desenvolvimento de aplicações Web [] Desenvolvimento de aplicações móveis

[] Padrões de projeto

5. Você já trabalhou (ou está trabalhando) em empresa de desenvolvimento de sistemas? Se sim, por
quanto tempo?

() Não, nunca trabalhei em empresa de desenvolvimento.

() Trabalhei menos que 6 meses.

() Trabalhei entre 6 meses e 1 ano.

() Trabalhei entre 1 e 3 anos.

() Trabalhei mais de 3 anos.

6. Como você classifica seu conhecimento em relação aos seguintes tópicos?

I. Desenvolvimento Android

() Experiente () Pouco

() Moderado () Nenhum

II. Desenvolvimento Java

() Experiente () Pouco

() Moderado () Nenhum

B.2. Task Descriptive Sheets 77

B.2 Task Descriptive Sheets

TAREFA TUTORIAL: ADICIONAR EVENTOS DE CLICK

Anote aqui o horário de início: _____ : _____

Arquivo: com.dcc052.more.aqui.app.MoreAquiActivity.java

Essa tarefa tem como objetivo adicionar os eventos de click aos botões "Novo" e "Visualizar" existentes
na tela inicial.

Para isto você deverá utilizar os métodos.:

• Activity.findViewById(int)

◦ Link para documentação → http://developer.android.com/reference/android/app/Activity.html
◦ Link → http://goo.gl/jfdL

• View.setOnClickListener(android.view.View.OnClickListener)
◦ Link para documentação →http://java.llp2.dcc.ufmg.br/apiminerunb/docs/reference/android/

 view/View.html
◦ Link → http://goo.gl/veLO1

Variáveis necessárias:

• R.id.btn_new: Identificador do botão "Novo"
• R.id.btn_show: Identificador do botão "Visualizar"

Anote aqui o horário de término: _____ : _____

Observações (Opcional):

78 Appendix B. Forms Used in the Controlled Study

TAREFA 01: TRANSIÇÃO ENTRE AS TELAS

Anote aqui o horário de início: _____ : _____

Arquivo: com.dcc052.more.aqui.app.MoreAquiActivity.java

As transições entre as telas durante o click dos botões não estão implementadas. Esta tarefa tem como
objetivo implementar a transição para as telas InsertActivity e ShowActivity.

Para isto você deverá utilizar os seguintes métodos (na ordem informada):

• Intent.Intent(android.content.Context, java.lang.Class<?>)

◦ Link para documentação →http://developer.android.com/reference/android/content/
 Intent.html

◦ Link → http://goo.gl/ckcOR

• Activity.startActivity(android.content.Intent)
◦ Link para documentação → http://developer.android.com/reference/android/app/Activity.html
◦ Link → http://goo.gl/jfdL

Variáveis necessárias:

• intent: Variável local que armazenará os dados para a transição. Um objeto do tipo Intent deverá
ser criado (via operador new).

Anote aqui o horário de término: _____ : _____

Observações (Opcional):
__
__
__
__
__

B.2. Task Descriptive Sheets 79

TAREFA 02: PERSISTÊNCIA DO REGISTRO NO BANCO DE DADOS

Anote aqui o horário de início: _____ : _____

Arquivo: com.dcc052.more.aqui.app.InsertActivity.java

Após o preenchimento dos campos, é preciso inserir o objeto na base de dados do aplicativo.

Voce deverá implementar a funcionalidade de inserção do objeto no banco de dados. Para a execução
dessa tarefa você deverá utilizar os seguintes métodos.:

• SQLiteOpenHelper.getWritableDatabase()

◦ Link para documentacao→http://java.llp2.dcc.ufmg.br/apiminerunb/docs/reference/android/
 database/sqlite/SQLiteOpenHelper.html

◦ Link → http://goo.gl/e4Nx0

• ContentValues.ContentValues();
• ContentValues.put(java.lang.String, java.lang.String);
• ContentValues.put(java.lang.String, int);

◦ Link para documentação → http://java.llp2.dcc.ufmg.br/apiminerunb/docs/reference/android/
 content/ContentValues.html

◦ Link → http://goo.gl/BNz9w

• SQLiteDatabase.insertOrThrow(java.lang.String,java.lang.String,android.content.ContentValues);
◦ Link para documentação → http://java.llp2.dcc.ufmg.br/apiminerunb/docs/reference/android/

 database/sqlite/SQLiteDatabase.html
◦ Link → http://goo.gl/WX16S

Variáveis necessárias:

• estatesDb: Variável que referencia o banco de dados onde serão persistidas as informações
• DBConstants.TABLE_NAME: Nome da tabela onde os dados serão armazenados
• O valor estate.PHONE deve ser armazenado na coluna DBConstants.PHONE
• O valor estate.SIZE deve ser armazenado na coluna DBConstants.SIZE
• O valor estate.STATUS deve ser armazenado na coluna DBConstants.STATUS
• O valor estate.TYPE deve ser armazenado na coluna DBConstants.TYPE
• O valor estate.LAT deve ser armazenado na coluna DBConstants.LAT
• O valor estate.LONG deve ser armazenado na coluna DBConstants.LONG

Anote aqui o horário de término: _____ : _____

Observações (Opcional):
__
__
__
__

	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Description
	1.3 Goals and Contributions
	1.4 Organization

	2 Background
	2.1 Introduction
	2.2 Code Search Engines
	2.3 API Recommendation Systems
	2.4 IDE-based Recommendation Systems
	2.4.1 Strathcona
	2.4.2 API Explorer
	2.4.3 MAPO

	2.5 JavaDoc-based Recommendation Systems
	2.5.1 eXoaDocs
	2.5.2 APIExample
	2.5.3 PropER-Doc

	2.6 Other Systems
	2.7 Critical Assessment
	2.8 Program Slicing
	2.9 Final Remarks

	3 Proposed Solution
	3.1 Introduction
	3.2 API Database
	3.3 Systems Database
	3.4 Extraction
	3.5 Summarization
	3.5.1 Summarization Algorithm

	3.6 Examples Database
	3.7 Ranking Algorithm
	3.8 JavaDoc Documentation
	3.9 Final Remarks

	4 Android APIMiner
	4.1 Overview
	4.2 Android API
	4.3 Android APIMiner
	4.4 Ranking Parameters
	4.5 Field Study
	4.5.1 How Many Users Accessed Android APIMiner?
	4.5.2 Which Locations do the Visits to Android APIMiner Come From?
	4.5.3 How Many Examples Android APIMiner Provided?
	4.5.4 Do Developers Search for Source Code Examples?

	4.6 Controlled Experiment
	4.6.1 More Aqui
	4.6.2 Experiment Setup
	4.6.3 Experiment Execution
	4.6.4 Experiment Results
	4.6.5 Threats to Validity

	4.7 Final Remarks

	5 Conclusions
	5.1 Contributions
	5.2 Comparison with Related Work
	5.3 Future Work

	Bibliography
	A List of Android Systems
	B Forms Used in the Controlled Study
	B.1 Information Form
	B.2 Task Descriptive Sheets

