
MINERAÇÃO DE HABILIDADES TÉCNICAS DE

DESENVOLVEDORES DE PROJETOS DE

CÓDIGO ABERTO





JOÃO EDUARDO MONTANDON DE ARAUJO FILHO

MINERAÇÃO DE HABILIDADES TÉCNICAS DE

DESENVOLVEDORES DE PROJETOS DE

CÓDIGO ABERTO

Tese apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Doutor em Ciência da Computação.

Orientador: Marco Túlio de Oliveira Valente

Belo Horizonte

Janeiro de 2021





JOÃO EDUARDO MONTANDON DE ARAUJO FILHO

MINING THE TECHNICAL SKILLS OF OPEN

SOURCE DEVELOPERS

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Doctor in Computer Science.

Advisor: Marco Túlio de Oliveira Valente

Belo Horizonte

January 2021



c© 2021, João Eduardo Montandon de Araujo Filho.
Todos os direitos reservados.

Montandon de Araujo Filho, João Eduardo

A663m Mining the Technical Skills of Open Source
Developers / João Eduardo Montandon de Araujo
Filho. — Belo Horizonte, 2021

xxix, 113 f. : il. ; 29cm

Tese (doutorado) — Federal University of Minas
Gerais

Orientador: Marco Túlio de Oliveira Valente

1. Computação – Teses. 2. Software –
Desenvolvedores – Teses. 3. Mineração de repositórios
de software – Teses. 4. GitHub – Teses. I. Valente,
Marco Túlio de Oliveira. II. Universidade Federal de
Minas Gerais, Instituto de Ciências Exatas,
Departamento de Ciência da Computação. III. Título.

CDU 519.6*32(043)







À todos que, de alguma forma, me inspiram a ser mais do que sou.

ix





To those who inspire me to be a better version of myself.

xi





Agradecimentos

Este manuscrito é o resultado de um período de intensa dedicação, profundo
aprendizado, e muita luta. O caminho rumo ao desconhecido por algumas vezes se
mostra adverso, incerto, e solitário. O que aparentava ser uma longa e desgastante
jornada se revela ao final um caminho de realizações, conquistas, e superação. Nada
disso seria possível sem o apoio incondicional daqueles que, realmente, nos querem bem.

Em primeiro lugar agradeço a Fé em Deus por ser a força motriz que me man-
teve sempre em movimento.

A minha querida Míriam Cristina, agradeço por ser a luz a me guiar em todos
os momentos. Seu brilho iluminou meu caminho nos momentos de maior dúvida e
insegurança.

Agradeço também às minhas duas famílias pelo constante apoio nesta caminhada.
Aos meus pais, Marilene e João, obrigado pela compreensão em momentos difíceis;
ao meu irmão Pedro, agradeço as inúmeras conversas e reflexões que me trouxeram
grande sabedoria. A Gilberto, Isabel, Ludmila e Thales, agradeço pelos ótimos mo-
mentos que passamos juntos. Todos vocês foram minha fonte revigorante neste trajeto.

Meu muito obrigado ao Colégio Técnico de Minas Gerais (COLTEC) e a seus
profissionais por estarem ao meu lado desde o início desta caminhada, propiciando o
ambiente para a realização desta qualificação. Em especial, agradeço ao Núcleo de
Tecnologia da Informação (NTI) pelo sacrifício realizado durante minha ausência.

Aos integrantes do aSERG, fica meu agradecimento pela inestimável companhia
do dia-a-dia, pelas discussões que certamente contribuíram para o trabalho, e pelos
encontros semanais que realizamos neste período. Em especial, registro meu agradeci-
mento a profa. Luciana Silva pela parceria nos trabalhos que realizamos em conjunto.

xiii



Agradeço também aos profs. Yann-Gaël Guéhéneuc e Fábio Petrillo, e ao Cris-
tiano Politowski por me receberem de braços abertos na Universidade de Concordia.
Apesar do curto período, as discussões e convivência que tivemos seguramente
contribuíram para meu desenvolvimento como pesquisador.

Por fim, gostaria de expressar a minha mais sincera gratidão ao prof. Marco
Túlio Valente que, durante estes 10 anos, me guiou, aconselhou, e me ensinou sábias
lições com as quais levarei comigo em minha vida e carreira.

xiv



Acknowledgments

This manuscript represents a period of intense dedication, learning, and struggle.
Walking into the unknown sometimes is to face the adverse, the uncertain, and the
loneliness. The path that appeared to be long and exhausting turned out to be
a journey of pleasant surprises and personal achievements. None of this would be
possible without the unconditional support of those who wish me the best.

First and foremost, I thank my faith in God for being a major driving force
that continuously kept me moving.

To my beloved Míriam Cristina, thanks for being the guiding light at every
moment in this journey. Your brightness enlightened my path at the most crucial
moments.

I also acknowledge my both families for the never-ending support in this pe-
riod. To my parents, Marilene and João, thanks for supporting me at the difficult
times; to my brother, Pedro, I appreciate our discussions and the wisdom they brought
to me. To Gilberto, Isabel, Ludmila, and Thales, thank you for providing such
refreshing moments.

Many thanks to the Colégio Técnico de Minas Gerais (COLTEC) and its pro-
fessionals for supporting me since the beginning. A special thanks to my colleagues at
NTI who willingly took my place during my absence.

To my fellows at the Applied Software Engineering Group (aSERG), your day-
by-day company meant a lot to me: thank you very much! Particularly, I thank
professor Luciana Silva for the partnership we established during this research.

A special thanks to professors Yann-Gaël Guéhéneuc and Fábio Petrillo, and to

xv



Cristiano Politowski for the warmed welcome at the Concordia University. I’m
grateful for the fruitful discussions we had, and the opportunities we worked together,
which certainly contributed to my growth as a researcher.

Finally, I would like to express my most sincere gratitude to my mentor profes-
sor Marco Túlio Valente, for wisely guiding, advising, and teaching me insightful
lessons during these 10 years. I will surely take them with me in my life and career.

xvi



“It is better to be lucky. But I would rather be exact.
Then when luck comes, you are ready.”

(Ernest Hemingway)

xvii





Resumo

Atualmente, software está “devorando o mundo” a medida em que surgem novas em-
presas nas quais o modelo de negócios é totalmente centralizado em um sistema com-
putacional. O sucesso da implantação de tais sistemas depende, em grande medida, da
qualidade e competência dos desenvolvedores responsáveis por sua implementação. Em
virtude disso, empresas de TI tem empregado um esforço contínuo na contratação de
novos profissionais para atuar em seus projetos. Em paralelo, o crescimento de comu-
nidades digitais de desenvolvimento—tais como GitHub e Stack Overflow—tem con-
tribuído com o crescimento de uma nova geração de desenvolvedores. Essas plataformas
disponibilizam publicamente informações de seus usuários, frequentemente utilizadas
por recrutadores durante a busca de novos talentos. Todavia, o volume e formato dos
dados limita esta análise apenas a informações básicas e superficiais dos desenvolve-
dores. Neste contexto, propõe-se nesta tese uma ampla investigação dos métodos para
identificar habilidades técnicas de desenvolvedores de software. Esta pesquisa está or-
ganizada em três grandes trabalhos. O primeiro investiga as habilidades técnicas e
comportamentais mais demandadas dos desenvolvedores na visão das empresas de TI.
Em seguida, analisa-se a efetividade das abordagens orientadas a dados na identificação
das habilidades técnicas dos desenvolvedores em duas perspectivas: (a) profundidade,
usando técnicas supervisionadas e não-supervisionadas para determinar o nível de con-
hecimento de desenvolvedores em bibliotecas de software; e (b) largura, aplicando méto-
dos supervisionados para detectar a proficiência de desenvolvedores em seis funções de
trabalho. A pesquisa obteve resultados promissores ao adotar um método de clusteri-
zação na classificação do nível de conhecimento dos desenvolvedores; identificaram-se
grupos nos quais a concentração de desenvolvedores especialistas variou entre 65% e
75%. Em relação às funções de trabalho, o modelo proposto reportou resultados com
eficácia entre 69% (revocação) e 89% (AUC).

Palavras-chave: Mineração de Repositórios de Software, Desenvolvedores de Soft-
ware, Habilidades Técnicas, GitHub.
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Abstract

Software is “eating the world” as we witness the rise of companies whose business model
is totally centered on software. The successful implementation of these systems heavily
depends on the quality and expertise of their software development teams. Indeed,
IT-based companies are making an increasing effort to hire new professionals to fulfill
their open positions. At the same time, the emergence of Social Coding Platforms
(SCPs)—e.g., GitHub, Stack Overflow, etc—is contributing to nurturing a new gener-
ation of software developers. On one hand, these platforms favor technical recruiters
by providing interesting information about software developers when prospecting a
new workforce to their companies. On the other, the large volume of data available
limits recruiters to only assess superficial information of their candidates. In order
to contribute to this problem, we describe in this thesis an extensive investigation of
methods and techniques that effectively identify the technical skills of software de-
velopers based on their activity in SCPs. We organize the research in three major
working units. We start by studying in more detail the most demanded technical and
soft skills of software developers under the eyes of IT companies. Next, we analyze
the effectiveness of data-driven methods to assess developers’ technical skills from two
perspectives: (a) deep, where we evaluate supervised and unsupervised methods to
identify the expertise level of software developers in three popular JavaScript libraries;
and (b) broad, where we apply supervised methods to detect developers’ proficiency in
six widely mentioned technical roles. Overall, we obtained promising results in using
an unsupervised technique to classify developers’ expertise level. For example, we were
able to produce clusters where the number of experts ranges from 65% to 75%. With
respect to technical roles, the proposed model reported higher outcomes for precision
(88%) and AUC (89%).

Palavras-chave: Mining Software Repositories, Software Developers Expertise, Tech-
nical Skills, GitHub.
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Chapter 1

Introduction

We start this chapter by introducing the problem that motivates the research reported
in this thesis (Section 1.1). Then, we highlight both the major goals and contributions
we obtained around this work (Section 1.2). Finally, we present the list of publications
we achieved so far (Section 1.3), as well as the outline of the remaining of this thesis
(Section 1.4).

1.1 Problem and Motivation

Software development is a human-centric activity, which makes developers the most
important asset of software companies [DeMarco and Lister, 1999]. Moreover, after 25
years of the invention of modern Internet technologies, software is “eating the world”
and we everyday observe the rise of companies totally centered on software. Among
the examples, we can mention companies that recently relied on software to disrupt
traditional markets. For instance, the world’s largest taxi company (Uber) owns no
taxies, but an innovative software. The same is happening with hotels (due to AirBnB),
telecommunication companies (due to Skype, Whatsapp, and Zoom), and media com-
panies (due to Google and Facebook).

During this period, software systems have become more complex artifacts, which
increasingly demands new levels of specialization of their development teams. For ex-
ample, current software teams include experts in different areas, such as databases,
security, human-computer interface (or front-end design), core features (or back-end
design), mobile development, etc. Besides, software companies require their develop-
ers to master several specific technologies so they can perform their daily work. Ac-
cordingly to the Bureau of Labor Statistics1—a US government agency that provides

1https://www.bls.gov/ooh/computer-and-information-technology/software-

1

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
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statistics about the labor market—the “employment of software developers is projected
to grow 24% from 2016 to 2026, much faster than the average for all occupations”. As
a consequence, we are observing a worldwide shortage of skilled software engineers.

Consequently, IT-based companies are giving high importance when it comes to
hiring new professionals. For instance, Mark Zuckerberg has publicly stated that “our
[Facebook’s] policy is literally to hire as many talented engineers as we can find”.2 As
a second example, Valve Corporation—a well-known video game developer company—
have even highlighted the importance of hiring people in an internal handbook dis-
tributed to newcomers:

Hiring well is the most important thing in the universe. Everything else in
our world is subordinate to finding great people and keeping the bar high.
(Valve Corporation [2012])

At the same time, we have noticed the rise of global repositories and communities
of open source developers, known as Social Coding Platforms (SCPs). For example,
GitHub—the world’s largest collection of open source projects—contains approximately
56 million users and more than 60 million repositories were created in the platform
in the last year.3 Similarly, Stack Overflow—the most accessed Q&A platform for
software developers—has almost 14 million users responsible for producing more than
51 million questions and answers.4 Such platforms are contributing to nurture and
train a new generation of software developers, who have the opportunity to participate
in the development of a variety of popular and complex software systems [Eghbal, 2016;
Dabbish et al., 2012; Begel et al., 2013].

Therefore, it is not a surprise that software companies are using SCPs to prospect
potential candidates to fulfill their open positions. As mentioned by Marlow and Dab-
bish [2013], employers believe that GitHub profiles can provide relevant insights into
developers’ technical abilities and personal qualities in a more reliable way than per-
sonal resumes. On one hand, employers can use GitHub to access not only developers’
code but also their development history, online presence, social interactions, community
engagement, etc. Furthermore, the amount of information available in these platforms
allow technical recruiters to select candidates that fit their specific needs. On the other
hand, employers usually limited themselves to analyze easily verifiable signals—e.g.,
the number of projects owned, the programming languages used, etc—since an in-

developers.htm, accessed in April 2018
2https://code.org/quotes, accessed on November 2020
3https://octoverse.github.com/2020, accessed on November 2020.
4https://data.stackexchange.com/, accessed on November 2020.

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
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depth analysis of GitHub profiles requires significant manual effort. As a consequence,
employers do not take full advantage of the data provided by these platforms.

1.1.1 The Literature Perspective

We observe an increasing number of studies relying on data provided by SCPs
to conduct empirical research and large-scale analysis in the software engineering
field [Cosentino et al., 2017]. These papers cover a range of research topics in soft-
ware development, including software maintenance and evolution issues [Brito et al.,
2018; Uddin et al., 2020; Hora, 2021], source code documentation [Menezes et al.,
2018; Campos et al., 2016; Souza et al., 2019], and open-source projects’ characteri-
zation [Silva and Valente, 2018; Politowski et al., 2021; Treude and Robillard, 2017;
Coelho and Valente, 2017].

When it comes to the state-of-the-art concerning expertise in software develop-
ment, the existing literature unveils developers’ abilities in several scenarios. Some
studies focus on discerning developers’ abilities according to a particular domain they
are involved. Da Silva et al. [2015] and Honsel et al. [2016] proposed to identify experts
for source code elements—such as methods, classes, and packages—of specific projects.
Constantinou and Kapitsaki [2017] overcame with a model to detect the contribution
roles of developers in open source projects, e.g., bug fixer, triager, core developer, etc.
Avelino et al. [2019a] used the truck-factor metric to identify core developers—those
who have more knowledge of the system’s structure—in popular projects. The ap-
proaches we just described are intrinsically limited to the scope of the problem defined
by them, i.e., they are not centered on the general expertise of developers.

Other works aimed at leveraging developers’ skills independently of the context
they are working on. Teyton et al. [2013] performed a syntactical analysis over develop-
ers’ commits to measure their expertise in third-party libraries. Likewise, Saxena and
Pedanekar [2017] instrumented the profile of GitHub users by annotating them with
Stack Overflow tags. In both cases, relying on abstract syntax trees to obtain expertise
information may reduce the performance of the solution in a larger dataset. Oliveira
et al. [2019] relied on more simplified information—activity-based features such as the
number of commits—to detect experts in Java libraries, but restricted the expertise
granularity level and the universe of developers considered in their analysis.

We also identify studies that reveal general abilities of software developers—e.g.,
programming languages, operating systems, IDEs, etc—but they do so having specific
situations in mind. For instance, Hauff and Gousios [2015] mined GitHub profiles and
job advertisements to match each other automatically. Mao et al. [2015] and Wang
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et al. [2017] aimed at pointing the most suitable developers for performing tasks in
crowdsourcing platforms.

Notwithstanding the acknowledged effort in identifying the abilities of software
developers, the aforementioned research papers do not completely meet the demands
reported by industry players., i.e., automatically leverage skills profiles that—based on
developers’ general activity in SCPs like GitHub—can assist recruiters and employers
during the hiring process. Therefore, in this thesis we investigate methods and tech-
niques that can better recognize the technical skills of software developers based on their
activity in open source projects.

1.1.2 The Industry Perspective

The ideal large-scale hiring process should enable technical recruiters to visualize a
large number of developers’ profiles containing different levels of technical expertise,
such as their principal hard skills5 and professional roles. Put differently, companies
are interested in candidates who have deep knowledge in their main area but also have
a broad understanding of the software development cycle as a whole.

Broad

Deep

Figure 1.1: T-shaped professional skill model.

We visually depicted the relationship between these two axes in Figure 1.1. People
carrying such a profile are known as T-shaped professionals, and pick up the charac-
teristics of both generalists (broad) and specialists (deep). These professionals are
highly-valued due to their capacity of solving problems in a multidisciplinary environ-
ment [IfM and IBM, 2007]. In the context of software development, professionals fitting

5In this thesis, the terms hard skills and technical skills are used interchangeably.
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this profile are capable of interacting with other fields in order to build an innovative
product [Valve Corporation, 2012]. Thereby, in this thesis we shed light on the abilities
that IT companies require when hiring new collaborators, as well as study techniques
to identify developers’ technical skills in both broad and deep perspectives.

1.2 Goals and Contributions

As early stated, the existing methods for assessing software developers’ expertise are
project-oriented, i.e., they aim at identifying experts to work at specific parts of a given
project [Fritz et al., 2014; Bhattacharya et al., 2014; Da Silva et al., 2015; Constantinou
and Kapitsaki, 2017]. The ones that propose a domain-independent developers’ skills
analysis contain restrictions either regarding the performance or the scope of their
evaluation [Teyton et al., 2013; Saxena and Pedanekar, 2017; Oliveira et al., 2019]. On
the other hand, technical recruiters are more interested in skills profiles that can reveal
developers’ abilities in both broad and deep perspectives [IfM and IBM, 2007; Valve
Corporation, 2012]. Hence, our main goal in this thesis is described as follows:

We aim at providing a comprehensive investigation around methods and techniques
to effectively identify the technical skills of software developers given their activity
in Social Coding Platforms.

To make this research possible, we conducted three major studies. First, we
study in more detail the side view of the skills required by IT companies when they
are looking for new professionals. In the second study, we investigate the use of data-
driven methods to mine developers’ expertise in a deep perspective. More specifically,
we assess the expertise level of software developers in third-party libraries. The third
study also relied on data-driven techniques but to evaluate the expertise of software
developers in a broad perspective, where we proposed to automatically identify their
technical roles. We summarize each study and highlight their contributions in the
remainder of this section.

1.2.1 Analyzing the Skills Profile Required by IT Companies

Due to the increasing complexity of software development, IT companies are contin-
uously in demand for more professionals to work on their projects. Despite this fact,
we still lack information on how these companies deal with this issue when looking for
developers to fulfill their open positions. Therefore, in this thesis we initially report the
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results of a quantitative study designed to reveal the skills required by IT companies
when selecting new employees. In this study, we present the following contributions:

• We performed a large-scale analysis of 20,000 job opportunities available in Stack
Overflow Jobs portal, a platform that allows companies to publish new opportu-
nities for IT professionals.

• We leveraged the characteristics of 14 IT professional roles—e.g., Backend, Fron-
tend, Mobile, etc—and revealed which kind of technical skills are demanded in
each one. For example, we observed that programming languages are largely
required even in management-based positions. Furthermore, experience in third-
party components—i.e., libraries and frameworks—is frequently mentioned in
developer-based ones.

• We revealed which soft skills are mostly required by IT companies when selecting
new professionals. Particularly, we reinforced the importance of communication,
collaboration, and problem-solving skills to software developers.

1.2.2 Library Expertise Assessment

Modern software development heavily depends on libraries and frameworks to increase
productivity and reduce time-to-market [Ruiz et al., 2014; Sawant and Bacchelli, 2017].
In this context, identifying experts on popular libraries and frameworks has key impor-
tance. For example, open-source project managers can use this information to select
contributors to their systems. Private companies can also consider this information
before hiring developers for their projects. Therefore, in this second study, we evaluate
the use of machine learning and data-mining methods in order to identify developers’
expertise level on popular libraries and frameworks. Our analysis was based in the
following hypothesis: When maintaining a piece of code, developers also gain expertise
on the frameworks and libraries used by its implementation. In other words, we claim
that low-level data—based on source code—can help such methods in this detection
task. We emphasize the following contributions of this work:

• We surveyed 575 developers and collected their expertise level on three largely
used JavaScript libraries: facebook/react (for building enriched Web inter-
faces), mongodb/node-mongodb (for accessing MongoDB databases), and
socketio/socket.io (for real-time communication). We then build a public
dataset with the activity-based information collected from their GitHub profiles.



1.2. Goals and Contributions 7

• We evaluated the performance of two supervised machine learning algorithms to
predict developers’ expertise level. We documented the difficulties and challenges
of using this method to classify expertise levels on widely popular third-party
components.

• We propose an unsupervised method to identify library experts based on cluster-
ing methods, this time achieving promising results. For example, we were able to
produce clusters where the number of experts ranges from 65% to 75%. We also
triangulated our results with information available on LinkedIn. Indeed, 72% of
the experts in facebook/react explicitly cite this framework in their LinkedIn
profiles.

1.2.3 Mining Developers’ Technical Roles

(a) Facebook (b) Netflix (c) Uber

Figure 1.2: Jobs opportunities list

As mentioned in Section 1.1, software development teams include experts in dif-
ferent areas, e.g., back-end, front-end, mobile development, etc. This composition is a
consequence of how current software systems are implemented; indeed, most companies
rely on these roles when hiring new developers. For example, Figure 1.2 depicts the jobs
opportunities list for three widely known software companies: Facebook6, Uber7, and

6https://www.facebook.com/careers/jobs, accessed on November, 2018
7https://www.uber.com/careers, accessed on November 2018

https://www.facebook.com/careers/jobs
https://www.uber.com/careers


8 Chapter 1. Introduction

Netflix8. As we can observe, software engineering jobs are commonly labeled according
to major expertise areas, such as mobile development, machine learning engineering,
front-end development, back-end engineering, etc. This is also observed for other soft-
ware companies. Therefore, in this third working unit, we study three machine learning
methods to identify the technical roles of software developers. To perform this inves-
tigation, we assume the following hypothesis: the technologies that developers master
define their technical roles. This time we rely on high-level data—e.g., textual in-
formation, GitHub metadata, etc—as we understand they represent a better source
to capture the information of such technologies. This work has contributed to the
following:

• By relying on the information provided by developers on Stack Overflow, we
leveraged a ground truth containing the technical roles of 2,284 users who also
have a GitHub profile.

• We evaluated the effectiveness of three machine learning strategies to classify
the qualification of software developers in the following technical roles: Backend,
Frontend, FullStack, Mobile, DataScience, and DevOps. These models presented
competitive results with respect to precision (0.88) and AUC (0.89) when iden-
tifying all six roles. We also show the relevance of programming languages when
predicting the aforementioned roles.

• We performed a qualitative investigation on some developers’ profiles to under-
stand in which scenarios these classifiers make correct and incorrect predictions.
We analyzed these errors and discussed their impact on the performance of our
classifiers. For instance, we found out that a developer correctly classified as
mobile frequently indicate the use of mobile-specific technologies, such as the
presence of Swift source code. On the other hand, the misclassified develop-
ers we analyzed did not present role-specific information enough; e.g., a DevOps
developer not using devops-specific technologies.

1.3 Publications

This thesis encompasses the contributions contained in the following publications:

MSR ’19 João Eduardo Montandon, Luciana L. Silva, Marco Tulio Valente. Identify-
ing Experts in Software Libraries and Frameworks among GitHub Users. In 16th

8https://jobs.netflix.com/teams/engineering, accessed on November, 2018

https://jobs.netflix.com/teams/engineering
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International Conference on Mining Software Repositories (MSR), pages 276-287,
2019. (Chapter 4).

IST ’21 João Eduardo Montandon, Cristiano Politowski, Luciana Lourdes Silva,
Marco Tulio Valente, Fabio Petrillo, Yann-Gaël Guéhéneuc. What Skills do IT
Companies look for in New Developers? A Study with Stack Overflow Jobs. In-
formation and Software Technology, vol. 129, pages 1-6, 2021. (Chapter 3).

IST ’21 João Eduardo Montandon, Marco Tulio Valente, Luciana Lourdes Silva. Min-
ing the Technical Roles of GitHub Users. Information and Software Technology,
vol. 131, pages 1-19, 2021. (Chapter 5).

Furthermore, we also contributed to the following work during this Ph.D. research:

JSS ’21 Cristiano Politowski, Fabio Petrillo, João Eduardo Montandon, Marco Tulio
Valente, Yann-Gaël Guéhéneuc. Are Game Engines Software Frameworks? A
Three-perspective Study. Journal of Systems and Software, vol. 171, pages 1-22,
2021.

1.4 Thesis Outline

We organize this thesis as the following:

Chapter 2 covers in detail background information to support this thesis. Basically,
we describe the theory about expertise in software development along with state-
of-the-art research regarding the use of machine learning methods in the context
of mining software repositories.

Chapter 3 describes our motivational study where we analyze which hard and soft
skills are more required by IT companies. We report which types of hard skills
are more requested for 14 predefined IT roles, as well as the most mentioned soft
skills, overall.

Chapter 4 describes our first study where we evaluated the performance of machine
learning methods in identifying developers who are experts in specific technolo-
gies, i.e., libraries and frameworks. By relying on low-level activity data—such
as the number of changed lines, the number of commits, and the time interval
between them—we apply both unsupervised and supervised models to predict
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the expertise level on three popular JavaScript libraries. We document the chal-
lenges of using such techniques and propose a novel method to classify library
experts based on clustering analysis.

Chapter 5 presents a second study we have done to investigate the use of three ma-
chine learning strategies to detect the technical roles of open source developers.
This time, we rely on more coarse-grained information—e.g., source code projects’
dependencies, commits by each programming language—to classify developers
into six popular technical roles. We report in this chapter the effectiveness of ap-
plying such models to reveal these technical roles, as well as discuss which data
points are the most relevant to identify the aforementioned roles.

Chapter 6 summarizes the conclusions we leveraged throughout this thesis and out-
lines some ideas we find interesting to investigate in the future.



Chapter 2

Background

We start this chapter by defining expertise in the context of software development
(Section 2.1). Then, we discuss in Section 2.2 the most common techniques used to
mine software repositories. Similarly, we also listed some papers that applied some
Machine Learning methods to analyze the information mined from these repositories
(Section 2.3). In Section 2.4, we present the works that are directly related to this
thesis. Finally, we report our final remarks in Section 2.5.

2.1 Expertise in Software Development

Accordingly to Ericsson [2012], expertise “refers to the characteristics, skills, and
knowledge that distinguish experts from novices and less experienced people”. Some-
one is considered an expert when he/she is “widely recognized as a reliable source of
knowledge, technique, or skill whose judgment is accorded authority and status by the
public or his or her peers.” Experts stand out for presenting superior performance
when doing representative tasks in their field. Sometimes, this performance can be
mapped into objective criteria. For instance, it is quite simple to determine if someone
is an expert at running; we just need to analyze his running time. On the other hand,
it becomes difficult to identify experts in other fields as the criteria become more sub-
jective. We observe such characteristics when analyzing software developers since their
performance can be assessed in several ways.

To provide more concrete guidelines on how to measure software developers’ ex-
pertise, Baltes and Diehl [2018] leveraged a conceptual expertise framework specifically
for software development, illustrated in Figure 2.1. The framework was built using a
mixed-methods approach, where the authors surveyed software developers about which
characteristics do experts have and studied the existing literature on expertise and ex-

11
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Figure 2.1: Software development expertise conceptual framework, extracted from
Baltes and Diehl [2018].

pert performance. We immediately notice that knowledge and experience play a central
role when determining software developers’ expertise in this framework. In fact, we
intuitively associate developers’ expertise with a certain degree of knowledge together
with a certain amount of experience [Siegmund et al., 2014]. Knowledge and experience
are improved after completing a sequence of tasks. First, both are acquired at a more
specific level, related to a given task, e.g., a developer learns how to use a new frame-
work when working on a given task. Over time, this gain is transferred to a broader
and general level, e.g., the developer has mastered the framework and now can use it
in other tasks. As a result, this process directly influences the performance of software
developers, i.e., how they write their code.

In the following sections, we describe expertise in two major perspectives. Section
2.1.1 discusses the existing work regarding domain expertise, i.e., expertise in the con-
text of specific projects. Section 2.1.2 presents some studies that investigate developers’
general expertise, by analyzing their behavior in distinct environments.

2.1.1 Domain Expertise

Works in this category focus on researching developers’ ability to perform specific
tasks. Most of them aim at improving the allocation of software developers to perform
maintenance tasks in a particular context, i.e., the projects they often contribute to.
We identified research centered on topics such as source code authorship [Alonso et al.,
2008; Fritz et al., 2010; Da Silva et al., 2015; Avelino et al., 2019b], and identification of
organizational and contribution roles [Yu and Ramaswamy, 2007; Bhattacharya et al.,
2014].
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Alonso et al. [2008] started investigating how Version Control Systems (VCS)
can help to identify domain experts. For this, the authors build a rule-based model to
identify the core developers of one open source project. This model classifies source
code files into a set of categories and then derive developers’ expertise based on the
frequency of their commits on these files. The resulting output is made available in
a word cloud tool, which they used to identify the ones that most contribute to the
project. The authors concluded that a few developers are responsible for most project’s
source code.

Similarly, Kagdi et al. [2008] introduced an approach to recommend a ranked
list of developers who likely master the content of a particular file in a given project.
To leverage this ranking, the authors rely on a set of heuristics extracted from the
commits performed on a CVS-based project, including the number of contributions,
the most recent contribution, and the number of days they have contributed to the
project. The authors then implemented the resulting model as a tool for the Eclipse
IDE and evaluated its performance in 8 projects.

Fritz et al. [2010, 2014] propose a new mixed metric to identify experts in specific
source code files. This metric, known as degree-of-knowledge (DOK), was based on the
information collected from both commits and real-time interactions between developers
and source code files. Recently, Avelino et al. [2019b] partially extended this metric to
assess the effectiveness of repository-mining techniques for identifying software main-
tainers. More specifically, the authors evaluate distinct techniques, including (a) the
number of source code file changes; (b) the number of lines owned by a developer in the
most updated file; and (c) a linear regression based on DOA metric. After analyzing
these techniques against 10 systems, the authors observed better results for the latter
approach. In another work, the same authors relied on developers commit activity,
where they estimate truck-factors—i.e., a source code authorship metric—against 119
open source systems to identify their core developers [Avelino et al., 2019a].

Da Silva et al. [2015] introduced a refined technique to identify domain exper-
tise at a finer granularity level. The proposed solution has three particularities when
compared to other ones. First, the technique provides expertise at several granularity
levels, e.g., project, package, file, class, or method. Second, developers’ expertise can
also be obtained at different time intervals for the same project. Third, the technique
was implemented upon a GPU-based solution, allowing them to mine software reposi-
tory data more efficiently. The authors evaluated their approach by mining expertise
information at the Apache Derby project, and find out that granularity and time con-
straints do impact the identification of domain experts. Honsel et al. [2016] aggregated
different sources of data—such as commits, bug fixes, and mailing list activity—to mea-
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sure developers’ level of involvement in a given project. The authors then used Hidden
Markov Models to predict the contribution behavior of the analyzed developers. As a
result, they were able to classify developers into three categories: minor, major, and
core developers.

Other works investigated domain expertise in the context of organizational
roles [Yu and Ramaswamy, 2007; Bhattacharya et al., 2014]. Yu and Ramaswamy
[2007] presented a clustering-based model to derive developer roles based on the inter-
action among them. The interaction frequency was calculated using information from
e-mail correspondences, task sharing, co-editing actions, etc. The clustering model
showed two distinct groups: core members, who scored higher interaction rates; and
associate members, who reached lower interaction rates. Bhattacharya et al. [2014]
studied the use of graph models to classify developers on seven organizational roles:
patch tester, assist, triager, bug analyst, core developer, bug fixer, and patch-quality im-
prover. For this, the authors first leveraged, for each developer, two distinct expertise
profiles: (a) bug-fixing profile, which contains the activity information on bug tracking
systems for each developer in each project; and (b) source-code profile, which includes
the activity data each developer has for each project source code repository. The roles
were then obtained after applying a customized hierarchical graph model over both
profiles.

As we can observe, works in this category focus on identifying expertise in software
development for specific projects’ artifacts, i.e., source code files’ owners, developers
for specific bug fixing tasks, etc. That is, the expertise approaches proposed in these
studies are restricted, by definition, to the scope they previously defined, e.g., source
code files, issues, etc. In this thesis, we chose to investigate a method that is more
centered on the developers themselves, i.e., more robust to the different contexts they
work on.

2.1.2 General Expertise

Differently, the research described in this section aims at studying developers’ skills
independent from the context they work on. Overall, the literature distinct general
expertise into two major groups: soft skills and technical skills. While the former
includes skills, abilities, and traits related to people’s personality and behavior, the
latter comprises the technical skills needed to accomplish their work in several dis-
tinct contexts. This section reports studies that investigated general expertise from a
qualitative perspective.
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Marlow and Dabbish [2013] interviewed GitHub users to understand how do they
use the information available in GitHub profiles to assess people during the recruitment
and hiring process for software development positions. In total, they conducted a semi-
structured interview with 13 GitHub users; seven recruiters and six job seekers. The
authors analyzed the transcript and extracted relevant statements that both groups
bring up during the interview. Most recruiters indicated they rely on the users’ project
and community management activity to infer their traits. Job seekers, on the other
hand, highlighted they mostly look for signals indicating developers’ technical expertise
and their commitment to the open source community. In a second study, the authors
interviewed 18 GitHub users to understand how users in these platforms form “first
impressions” on their peers [Marlow et al., 2013]. The authors identified three categories
used by the interviewees to analyze other profiles: (a) general coding ability, formed
after examining users’ coding activity, such as number of commits, number of projects
owned vs forked, etc; (b) project-relevant skills, formed after probing the type of the
contributions, e.g., commits vs issues/comments; and (c) personality and interaction
style, formed after analyzing past discussions.

Similarly, Singer et al. [2013] investigated developer profile aggregators—
webpages that leverage developer profiles from the available data at Social Coding
Platforms (SCP)—to understand the influence these tools have in assessing develop-
ers’ abilities. Specifically, the authors surveyed 14 developers and 12 recruiters of two
popular profile aggregators systems—Coderwall1 and Masterbranch2—about the rea-
sons they use such platforms. For developers, the most important reason for enjoying
the community was the recognition of others. Furthermore, they frequently mentioned
the possibility to showcase their work as another reason to join this ecosystem. Re-
cruiters, on the other hand, highlighted they mainly use these systems to better assess
developers’ abilities and find better candidates to hire. For this, they generally rely on
some features provided by these platforms, such as endorsements, badges, and skills-
based filtering mechanisms (e.g., programming languages, file extensions, etc).

Sarma et al. [2016] relied on the aforementioned studies to create a tool that
summarises developers’ both soft and technical skills information into one single profile.
The tool, called Visual Resume, aggregates data from GitHub and Stack Overflow
and quantifies them into five indicators: (a) coding competency and quality work
for technical skills; and (b) collaboration, project management, and motivation for
soft skills. In total, nine participants with experience in hiring software developers
evaluated the proposed tool. The majority of the subjects used commits and projects-

1http://coderwall.com
2http://masterbranch.com

http://coderwall.com
http://masterbranch.com
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based metrics to analyze developers’ technical skills, and endorsement-based metrics—
e.g., reputation scores, number of followers, etc—to assess developers’ soft skills.

We centered our thesis on studying techniques to automatically identify develop-
ers’ technical skills. Therefore, research that address expertise in a quantitative context
are discussed in detail in Section 2.4.

2.2 Mining Software Repositories

Research in the Mining Software Repositories field has intensified in the last decade
due to the rising and popularization of Social Coding Platforms like GitHub and Stack
Overflow. Indeed, more than 56 million developers have a profile on GitHub according
to its 2020 survey; these developers have created approximately 60 million repositories
in the last year, resulting in more than 1.9 billion contributions in the same period.3

Likewise, Stack Overflow has become the most popular Q&A platform for software
developers. At the time we write this thesis, almost 14 million users were responsible
for providing 31 million answers to more than 20 million questions.4 Indeed, the amount
of data provided by these platforms made it possible to conduct empirical research on
the most varied topics in software engineering.

Some of the aforementioned works explored such data to investigate API main-
tenance and evolution issues. For instance, Brito et al. [2018] relied on GitHub to
gather information about the usage of Java libraries and frameworks, and used this in-
formation to study the motivations behind APIs’ breaking changes. Later, the authors
expanded their initial study and analyzed the information provided by Stack Overflow
as well [Brito et al., 2020]. Similarly, Hora [2021] also mined the source code of GitHub
projects, this time looking for examples of API usage. In order to generate APIs doc-
umentation automatically, Uddin et al. [2020] identified API usage examples in Stack
Overflow posts and then used the textual description present in these posts to leverage
APIs usage scenarios. Campos et al. [2016] make use of the existing “crowd knowledge”
in these platforms to recommend context-sensitive information to software developers
during their activities. Later, the authors based on this work to build a solution that
semi-automatically creates APIs cookbooks from the existing “crowd knowledge” on
Stack Overflow [Souza et al., 2019].

Other works studied more specific maintenance issues. For instance, Menezes
et al. [2018] analyzed the merge conflicts present in almost 3K Java projects and un-
covered some strategies to assist in merge-conflict resolution. Pimentel et al. [2019]

3https://octoverse.github.com/. Last access: Dec. 02, 2020.
4https://data.stackexchange.com/. Last access: Dec. 02, 2020.

https://octoverse.github.com/
https://data.stackexchange.com/
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analyzed 1.4M Jupyter notebooks from GitHub and reported the main factors that im-
pact their reproducibility. Silva et al. [2016] monitored Java projects hosted on GitHub
and surveyed developers who applied refactorings on these projects to understand why
they do so. Such projects were later used as an oracle to evaluate automated refactoring
tools [Tsantalis et al., 2018; Silva et al., 2020].

Finally, we also identified research focused on studying other aspects in both
GitHub and Stack Overflow ecosystems. Politowski et al. [2021] relied on the GitHub
ecosystem to describe the differences between video game engines and software frame-
works. Silva and Valente [2018] investigated the reasons that make open source projects
popular on GitHub and revealed this popularity in four different scenarios. In another
work, the authors conducted an exploratory study to understand the usage and impact
of GitHub reactions [Borges et al., 2019]. Zhou et al. [2020] reported their findings
of adopting hard forks in GitHub projects. Earlier, Vasilescu et al. [2014] studied the
usage of continuous integration techniques in this ecosystem. Treude and Robillard
[2017] performed an exploratory survey with 321 users to unveil the information that
developers need to understand Stack Overflow code fragments. Thiselton and Treude
[2019] implemented a plugin that extends error messages from the Python Compiler
with answers from Stack Overflow.

As in the studies we just described, this thesis centered its investigation in the
context of Social Coding Platforms, i.e., we studied methods and techniques to mine
developers’ expertise based on the data available in the GitHub ecosystem (see Chapters
4 and 5). We also used Stack Overflow as a complementary data source for the research
we accomplished in Chapters 3 and 5.

2.3 Machine Learning in Software Engineering

Machine Learning (ML) refers to the process of applying statistical modeling techniques
to reveal patterns in a large amount of data [Foster Provost, 2015; Amershi et al., 2019].
Recently, the volume of data provided by Social Coding Platforms allowed software
engineering researchers to make use of such techniques in their work. Since then, an
increasing number of studies relied on ML techniques to investigate various topics of
the software development lifecycle [Ferreira et al., 2019; Shafiq et al., 2020].

Many studies use these models to tackle quality assurance issues, like bug pre-
diction, test case prioritization, vulnerability analysis, etc. For example, Machalica
et al. [2019] developed a predictive model to select tests to be executed after changes
are committed in a continuous integration system. To train this classifier, they have
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had access to a large dataset containing changes and their associated tests. Peters
et al. [2013] proposed a customized metric that helps to collect relevant data in other
systems in a way that users can build cross-company defect prediction models. Abebe
et al. [2012] measured the quality of source code identifiers and verified whether this
information can improve traditional fault prediction strategies. Both studies relied on
the data provided by open source repositories to evaluate their approach.

Others applied such techniques to assist developers in software maintenance tasks.
Hora et al. [2016] implemented a classification model that, based on basic interface
usage features, recommends the right moment to promote internal APIs to public
ones; the model was evaluated in five widely adopted Java systems. Coelho et al.
[2018] proposed a survival model to identify unmaintained projects on GitHub, which
was later packaged as a free open source tool [Coelho et al., 2020]. For this, the
authors derived a set of activity-based features related to the project, its contributors,
and its owner. Dias et al. [2015] worked on a solution to untangle commits containing
unrelated changes—e.g., bug fix and refactoring—based on fine-grained modifications
such as the instant these corrections are made to each file, methods invocation, variable
access, etc. Alencar da Costa et al. [2014] and Bernardo et al. [2018] leveraged ML
models to estimate the time to integrate pull requests; the former analyzed this strategy
in the context of issues already addressed, while the latter analyzed this integration
time in continuous integration environments.

Some papers also relied on ML to handle architecture and design issues. Mendes
et al. [2016] overcome with a classification strategy to identify utility functions imple-
mented in open source systems; the idea is to verify if the identified functions are in the
correct module (utils). Bajammal et al. [2018] proposed an approach to automatically
generate reusable web components from HTML Mockups, where it first normalizes the
Mockup into a picture containing the interface elements and then applied an unsuper-
vised strategy to derive its components; the approach was evaluated on five real-world
mockups. Thaller et al. [2019] developed an algorithm to automatically identify the
use of four design patterns in source code.

Finally, other specific research problems in software engineering were tackled in
an analogous format. Bao et al. [2017] analyzed the use of ML techniques to predict
developers turn over in two private software companies. Tian et al. [2015] applied Ran-
dom Forest—a specific ML technique—to investigate the most influential factors when
classifying high-rated apps in the Android ecosystem. Kuhn et al. [2007] implemented
a clustering technique to group source code artifacts based on the semantic vocabulary
contained in them, like comments, identifiers names, etc.

Although the goals of the aforementioned studies vary greatly, they are similar
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with respect to the methodology used by them. Such similarities come from the way
that ML algorithms are applied in these studies; they are mostly used as an empirical
method to assist researchers in validating their hypothesis through large-scale data
analysis [Shafiq et al., 2020]. Likewise, we also relied on these techniques to support
the hypothesis we leveraged in Chapters 4 and 5.

2.4 Related Work

The studies which approach technical expertise centered on software developers present
several particularities. Besides, these works partially overlap the methods and goals
they set up; for instance, some works use the same feature set to investigate different
aspects of software expertise [Wan et al., 2018; Constantinou and Kapitsaki, 2016].
As a consequence, these works can be categorized in several aspects, ranging from the
distinct features used in their models (e.g., commit activity, GitHub metadata, Q&A
data, etc) to the type of expertise that was investigated (e.g., programming languages,
third-party libraries, etc). To better align with the way this thesis is structured, we
decided to organize related work as follows. Section 2.4.1 presents research that used
low level features—i.e., source code—to study developers expertise. In turn, Section
2.4.2 describes studies which relied on high level features, such as developers’ metadata.
Lastly, Section 2.4.3 depicts studies centered on analyzing technical expertise in more
specific tasks, like matching job opportunities.

2.4.1 Technical Expertise with Low-Level Features

As previously stated, the following studies rely on low-level features to mold developers’
technical expertise. Therefore, we opted to compare these works with the one described
in Chapter 4 of this thesis, as it is based on a similar feature set.

Teyton et al. [2013] structured a search engine solution that, based on mining
software repositories techniques, lists experts in third-party libraries. To identify li-
brary usage, the model performs a syntactical analysis over each commit looking for
source code lines that introduce any symbol of the library under analysis. Next, these
symbols are extracted and assigned to the author of the commit. Finally, the library
expertise grade is defined by the ratio between the number of symbols used by the
developer and the ones available at the library. Instead of reporting this information in
a profile format, the authors developed a DSL for querying experts in a given library.
This tool was used in two case studies with developers of the Apache HBase project: to
assess developers’ knowledge in the libraries used at HBase, and to recommend devel-
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opers to perform software development tasks. The authors identified that 8 out of 29
libraries have only one expert; so more developers should be trained to master them.
Furthermore, only three developers (out of 33) have expertise in more than half of the
necessary libraries, which illustrates their importance to the project. Later, the au-
thors fine-tuned the aforementioned approach to include more abstract features, such
as file extensions [Teyton et al., 2014]. Whilst this work focus on identifying developers
who are experts in a given library, our method considers developers’ expertise level as
well. Furthermore, the authors restricted the criteria to identify experts to only one
feature (amount of different symbols); on the other hand, we mined other contribution
aspects, such as the frequency, volume, and time between the contributions. Finally,
this solution has a major constraint with respect to its extension, since it is necessary
to reimplement the syntactical parser for every new programming languages.

Constantinou and Kapitsaki [2016] focused on extracting developers’ expertise
specifically for programming languages based on GitHub data. For each developer in
each programming language, the authors mined the commits from projects he/she par-
ticipated, and then calculated three commit-based features for each project: (a) Com-
mit Activity, corresponding to the percentage of commits he/she has; (b) Commit Files
Activity, representing the percentage of distinct files modified by the developer; and
(c) Changed LOC Activity, responsible for measuring the percentage of lines changed
by the developer. Furthermore, a boosting factor was introduced for each feature to
increase the weight of his/her previous contributions. Lastly, the authors aggregated,
averaged, and normalized the values obtained from each feature into a single one, indi-
cating the developer’s expertise level in each programming language. Similar to other
studies, a subset of 150 GitHub users with active profiles in Stack Overflow was selected
to compare the expertise rank generated by the proposed approach against the users’
answering activity in Stack Overflow. In general, their extraction method presented
interesting results when identifying users’ main programming language, as their main
language appears, on average, at the top 20% most recommended ones. Differently,
we studied techniques to identify developers’ expertise in the context of third-party
libraries. Besides, we also included more specific features to support our technique—
e.g., number of imports—due to the nature of technical skills we investigate (libraries
and frameworks).

Saxena and Pedanekar [2017] presented a method that extends the profile of
GitHub users by annotating them with Stack Overflow tags. To perform this match,
the proposed method parses the import statements of each source code file that a user
had contributed to, and extracts the class and method names attached to each package.
Next, these names are used as input to Stack Overflow search queries, where the authors
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extract the tags associated with the top-25 questions retrieved for each class/method
combination. Finally, these tags are weighted based on their frequency, and clustered
into distinct technological areas; the resulting skill profile is composed, for each user, by
its top-100 tags. An instance of this method was implemented for the Java language
and executed for 66 users. After qualitatively comparing the skill profiles with the
LinkedIn endorsements provided by these users, the authors observed their solution
provided a more detailed, yet accurate, list of technical skills. For instance, while some
resumes describe experience with Android, Java, and Web Development, the proposed
approach identified more specific techonologies like swing, opengl, jboss, etc. As in
Teyton et al. [2013] work, this approach is restricted to the parser’s implementation
(Java, in this case). It is also important to note that the same features are used to assess
expertise in distinct topics, such as languages, platforms, and libraries. By contrast,
we investigate in this thesis different strategies to mine distinct expertise topics.

Oliveira et al. [2019] proposed another strategy to identify experts, this time
considering frequency, depth, and breadth aspects when using third-party libraries. By
relying on three activity-based features—the number of commits, number of imports,
and number of LOC—the authors investigated the effectiveness of these features in
identifying experts in nine Java libraries. For this, they first collected the data of
12K GitHub projects that used one or more selected libraries and then calculated the
values of the features for each developer who contributed to these projects. Next, the
developers located in the top quintile of at least two features were requested to provide
an expertise rate in the evaluated libraries. After cross-checking the received responses,
the authors find out that a high precision rate can be achieved as long as the features are
combined. Although the authors follow a similar strategy to ours to identify expertise
in software libraries, we worked further on this problem and proposed a solution to
classify developers’ expertise level on these libraries. To make this possible, we also
have to overcome with an expanded feature set which takes into account volume and
time aspects. Moreover, we also conducted a wider evaluation where we analyzed the
performance of our method for developers not classified as experts.

2.4.2 Technical Expertise with High-Level Features

The studies reported below consolidate their features on a higher level of information,
not directly related to developers’ programming activity. We analyze these works from
the Chapter 5 perspective, where we also employed similar features in our study.

Wan et al. [2018] developed a recommendation system to rank developers cod-
ing skills based on information extracted from GitHub. The coding skills, mapped
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as a list of technology topics, are calculated by a probabilistic model, which takes
into account the textual metadata of GitHub projects (e.g., README files), and the
existing network information among users and repositories. The goal is to, given a
specific technology keyword (e.g., linux ), lists the most relevant developers related to
it. An instance of this tool was implemented using Stack Overflow’s data as ground
truth and evaluated in two different scenarios. In the first one, the authors selected
developers with existing profiles in both platforms and then verified if their proposed
solution returns similar technology topics to the ones present in Stack Overflow. The
second one was built manually for eight popular randomly selected topics, where four
independent subjects graded the returned developers according to each topic. In both
scenarios the tool presented better results, performing better for 5 out of 8 metrics in
the first scenario, and presenting the best ones for all 7 metrics in the second. We
also relied on Stack Overflow to leverage our ground truth in Chapter 5. However, we
focused our efforts on classifying developers into more abstract clusters, like technical
roles (e.g., backend, frontend, mobile, etc). We also discarded any kind of prioritization
between software developers since these features provide insufficient data to perform
such evaluation.

Previously, Greene and Fischer [2016] implemented a tool—called CVExplorer—
to extract and visualize developers’ skills data from GitHub, including skills on pro-
gramming languages, libraries, and frameworks. The extracted data is presented in
the form of a “tag cloud” interface, where the tags denote programming technologies
(e.g., web development), libraries and frameworks (e.g., React) or programming lan-
guages (e.g., JavaScript). These tags—mined from the project’s README files and
commits information—are extracted according to a previously defined white list con-
taining popular programming languages, web frameworks, third-party libraries, etc.
The authors then used CVExplorer to recommend candidates for open positions in
two private companies and then evaluated their feedback. Overall, both companies
returned positive reports; the first identified all 12 candidates as interesting options,
and the second flagged two out of five as suitable ones. Differently from our method,
the authors considered existing information on README files to analyze different ex-
pertise characteristics, i.e., languages, libraries, etc. On the other hand, we collected
data from more diverse sources—developers’ bio, projects’ metadata, commits activity,
etc—and also analyzed developers from a higher perspective (i.e., technical roles).

Huang et al. [2016] developed an approach that scores the programming ability of
software developers by considering data from Q&A and Open Source Software (OSS)
communities. The proposed approach is composed of four steps. First, an Identity
Linkage procedure is used to link developers’ profiles between the platforms into a single
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one. Next, a list of programming ability terms is extracted according to each platform;
answers information from Q&A and basic information from existing projects in OSS
platforms. These features are then used to feed independent expertise models that
will rate developers’ ability in a list of programming topics, e.g., libraries, frameworks,
programming languages, etc. Lastly, these scores are merged and averaged into a single
rate per topic, per developer. The authors experimented with their solution using the
information provided by Stack Overflow and GitHub platforms, where they evaluated
the effectiveness of their tool in identifying the top-10 developers in 305 topics in four
different models. Considering the best one, their technique had an average precision of
60%; showing better results for programming languages (80%). Although the authors
gathered data from multiple data sources, they restricted themselves to collect only
tagged information, i.e., answers tags from Stack Overflow and projects tags from
GitHub.

Agrawal et al. [2016] studied how to automatically reveal collaborators’ roles in
VCS based projects. The proposed solution consists of mining and analyzing the list of
commits each collaborator has performed in a given project. The authors start by ap-
plying the bag-of-words technique to extract keywords from the commits’ metadata—
e.g., commit messages, file extensions, etc—and tag each keyword into one or more
predefined labels representing distinct technical roles, such as Test, Web, Backend,
etc. This label is propagated to each commit that refers to the respective keywords,
resulting in a list of labeled commits. Lastly, the commits are aggregated by each
collaborator together with their labels, which are merged and averaged based on their
number of occurrences. As a result, the authors reveal which activities—and for how
much time—are performed in each role. This approach was tested in three private
projects, where the authors used the label’s distribution among each developer to bet-
ter understand the particularities of the technical roles they belong to. For instance,
they found out that a tester spends 43% of its time with tests, 18% with maintenance,
and 16% with web-based activities. It is important to note that, unlikely our study,
the authors unveil the activities performed in each role.

2.4.3 Technical Expertise Towards Specific Tasks

On the one hand, the research described in this section also mined the developers’
activity to extract their technical abilities. On the other, these works did so having
specific purposes in mind, like job ads recommendation. As a consequence, it might
be more difficult to extend the proposed solutions to other situations. The work de-
scribed in this thesis focuses on providing an overview of developers’ technical skills,
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i.e., independently of any specific task.
Hauff and Gousios [2015] proposed a pipeline that mines GitHub profiles and job

advertisements to match each other automatically. To make this pipeline possible, the
authors structured their solution into three steps. Firstly, they relied on NLP tech-
niques to extract expertise concepts from both job advertisements (job description) and
developers’ profiles (README files). Secondly, the extracted concepts are vectorized
and weighted using TF-IDF [Foster Provost, 2015] technique. Thirdly, they use cosine
similarity to match developers’ vectors with the ones extracted for the job ads.

Wang et al. [2017] aimed at recommending developers for software development
tasks in crowdsourcing platforms—e.g., TopCoder5—by considering the skill improve-
ment of software developers. To design such a tool, the authors first selected 74 de-
velopers with high commitment at TopCoder and extracted four features to map the
difficulty of the tasks they worked on. Based on this difficulty score, they leveraged a
prediction model that infers the performance rate of the developers for new crowdsourc-
ing tasks. Mao et al. [2015] also proposed a content-based recommendation technique
to automatically match tasks and developers in TopCoder. In particular, their solution
focuses on more descriptive attributes, such as tasks’ title, overview description, etc.
These features are used as input for a multi-class machine learning model that predicts,
based on developers’ past solved tasks, which one is most skilled for solving a given
task.

Venkataramani et al. [2013] implemented a model that mine developers’ activity
on GitHub to capture their technical expertise to recommend them to answer questions
in Stack Overflow. For this, the model first extracts a list of technical terms from the
source code files modified by each developer. Next, each term is mapped into its
respective Stack Overflow tags. Developers’ expertise familiarity is then measured
according to the frequency each tag appears for each developer. The authors evaluated
their approach by verifying contributors from 20 Java projects in GitHub who answered
questions tagged as java in Stack Overflow. For a sample of 15 developers, 7 have
answered questions containing tags that were also predicted by their approach.

2.5 Final Remarks

Figure 2.2 summarizes our view on how the background sections are related to each
other given the circumstances of this thesis. We started by defining what is expertise in
the context of software development, as well as which characteristics should we look at

5https://www.topcoder.com/

https://www.topcoder.com/
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Figure 2.2: Conceptual diagram summarizing the contribution of each Background
section to the study of software developers’ expertise.

when analyzing software developers (Section 2.1). Moreover, we described some studies
that qualitatively analyzed the activity information available for software developers,
and mapped the data points that can be used to help in attesting their expertise.
Next, we listed other papers that specifically use Mining Software Repositories (MSR)
methods in these Social Coding Platforms to investigate important issues, such as
APIs maintenance and evolution, the popularity of open source projects, etc (Section
2.2). In Section 2.3, we described relevant works that adopted Machine Learning (ML)
techniques to empirically investigate several topics in the software engineering field,
ranging from quality assurance to architecture and design problems. Finally, we bring
in Section 2.4 the state-of-the-art that applied MSR methods to collect information
about software developers, and employed ML techniques to shed light on which data
can be used to discern expertise elements.





Chapter 3

What Skills do IT Companies look
for in New Developers? A Study
with Stack Overflow Jobs

We describe in this chapter the results of a large-scale exploratory study intended to
reveal the technical and soft skills do IT companies look for when hiring
new developers. This study is structured into the following sections. We start by
introducing the relevance of conducting this investigation in Section 3.1. Sections 3.2
and 3.3 describe in-detail the data we used to conduct this research. We report our
analysis of technical skills in Section 3.4. Likewise, our findings regarding soft skills
are described in Section 3.5. We compare our results with other works in Section 3.6.
Section 3.7 lists the threats to validity concerning this work. Lastly, we conclude this
chapter in Section 3.8.

3.1 Introduction

There is a growing demand for information on how modern companies deal with the
skills they need when looking for developers for their open positions. To find out
what are these skills, we report in this work the first results of an analysis of more
than 20,000 job opportunities available in Stack Overflow Jobs portal, a platform that
allows companies to publish new opportunities for IT professionals. In particular, we
leveraged the main characteristics of 14 IT roles, such as Backend, Frontend, and Mobile
developers. We also analyze which soft skills are mostly requested by IT companies
when selecting new candidates. Finally, we discuss the implications of this analysis for
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both recruiters and developers.

3.2 The Anatomy of a Job Opportunity

A job opportunity is a declaration of expectations. It describes what a company expects
from its candidates, as well as what the candidates should expect from the company.
For this, a job opportunity includes important company details, such as mission, cul-
ture, benefits, etc. At the same time, the company should provide enough details so
candidates can decide whether they are qualified or not for the position. Lastly, an
opportunity should list the job’s responsibilities, so that candidates can be aware of
their duties.

Figure 3.1 shows an example of a job opportunity posted on Stack Overflow Jobs
portal. As we can observe, some skills are technically-driven, e.g., Python, REST &
API, JavaScript, etc. Skills in this group are known as hard skills [Xia et al., 2019]. By
contrast, other skills denote behavioral characteristics of the candidates, such as verbal
communication, team player, leadership, etc. They are known as soft skills [Sayfullina
et al., 2018]. In this investigation, we analyze both hard and soft skills required by IT
job opportunities.

3.3 Data Collection

We investigated the jobs posts available on Stack Overflow Jobs portal.1 We collected
the posts visible in the platform for three months, from March 25th to June 28th, 2019
by downloading the posts available in every weekday during this period. As a result,
we retrieved a total of 20,968 job posts, including their titles, description, and tags.
Furthermore, each post in Stack Overflow is automatically associated with at least one
out of 14 predefined roles provided by the platform, such as BackendDeveloper,
FrontendDeveloper, MobileDeveloper, etc. We also collected this information
to perform a fine-grained analysis of each post.

Figure 3.2 shows the distribution of opportunities for each role. FullStack-

Developer, BackendDeveloper, and SystemAdministrator are the most de-
manded positions, with at least 3,600 posts each, representing 52.8% of all job posts. By
contrast, six roles have less than 1,000 posts: DesktopDeveloper, DataScientist,
EmbeddedDeveloper, ProductManager, GameDeveloper, and Designer.
Together they represent 10.2% of the analyzed posts.

1https://stackoverflow.com/jobs

https://stackoverflow.com/jobs
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Figure 3.1: An example of a post in Stack Overflow Jobs portal. Hard skills are
annotated in blue, while soft skills are in yellow.
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Figure 3.2: Distribution of job posts collected in this study.

3.4 Analyzing Hard Skills

On Stack Overflow Jobs, companies describe the hard skills required for a given position
using the same tagging mechanism provided by Stack Overflow’s main platform. Tags
play a central role in this ecosystem, as they are used to identify Q&A topics [Saha
et al., 2013]. Therefore, we use the tags added to each post as an indication of the
hard skills demanded by each one. For instance, the tags associated to the job post in
Figure 3.1 (top) indicate that candidates should master python, javascript, and odoo.

In total, we identified 1,916 hard skills (i.e., tags) mentioned 70,680 times in the
collected posts. The frequency of these skills follows a long tail shape, where few ele-
ments are generally responsible for almost all occurrences. For this reason, we removed
the hard skills with less than 10 occurrences. We ended up with 282 hard skills, repre-
senting 67,062 occurrences (95%). Next, two authors used open card sorting [Spencer,
2009] to group tags into abstract categories. After analyzing together a group of 50
tags, they leveraged six abstract hard skills: Languages, Libs & Frameworks, OS &
Infrastructure, Process & Methods, Data Systems, and Development Tools. Then, they
independently annotated the remaining 232 tags into these categories (i.e., each tag
was evaluated by two authors). The inter-rater agreement, calculated using Cohen’s
Kappa [Warrens, 2015], was 0.82. Lastly, both authors discussed the conflicting cases
to reach a common ground. Table 3.1 presents a sample of ten hard skills tags collected
during this procedure along with the category assigned to them.

Figure 3.3 shows a heatmap with the distribution of high-level hard skills (rows)
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Table 3.1: High-level hard skills created after open card sorting

Category Hard Skills Examples

Data Systems sql-server, oracle, mysql, hadoop, database, postgresql, mongodb,
elasticsearch, bigdata, machine-learning.

Development Tools continuous-integration, selenium, jenkins, git, jira, puppet, cucum-
ber, maven, xcode, eclipse.

Languages java, javascript, sql, python, c#, c++, java-ee, css, php, c.
Libs & Frameworks reactjs, .net, spring, node.js, angular.js, asp.net, angular, ruby-on-

rails, spring-mvc, api.
OS & Infrastructure amazon-web-services, cloud, linux, windows, web-services, android,

security, ios, docker, azure.
Process & Methods testing, agile, qa, design, project-management, user-interface, etl,

automated-tests, user-experience, scrum.

per developer roles (columns). With this heatmap, we intend to provide a technology-
agnostic analysis, i.e., one that focuses on high-level hard skills (e.g., Languages) in-
stead of current technologies (e.g., Java). In this way, we also intend to increase the
validity of our results against technological changes.
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Figure 3.3: Heatmap indicating how hard skills are distributed among developers roles.

First, Languages-based skills are relevant for all roles, ranging from 21.5%
(DevOpsDeveloper) to 56.6% (DataScientist). In fact, Languages is the most
required hard skill for 9 out of 14 technical roles analyzed. Even designers must mas-
ter some sort of languages to better provide their prototypes, such as css, html, and
javascript. However, the concentration of Languages is higher for development-based
roles, e.g., MobileDeveloper (39.3%), GameDeveloper (50.7%), FullStack-
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Developer (43.5%), and FrontendDeveloper (49.5%). These characteristics
make Languages the only skills that are significantly mentioned in all roles.

Likewise, development-based roles also demand skills on Libs & Frameworks,
which generally have more than 20% of participation in this group. They are specially
required for FullStackDeveloper and FrontendDeveloper (34.1%, both).

Regarding OS & Infrastructure, two roles stand out with more than 50%: Sys-

temAdministrator (53.0%) and DevOpsDeveloper (51.9%). Interestingly, Mo-

bileDeveloper appears next with 36.4%. This result is explained by the fact that
such developers must master mobile operating systems, such as ios and android.

For Process & Methods, Designer stands out with 68.7% of the skills coming
from this group. Indeed, the most mentioned Designer skills are related to user inter-
faces, e.g., user-experience, user-interface, and design. Next, QATestDeveloper and
ProductManager follow up with 42.9% and 38.1%, respectively. Differently, these
roles require hard skills associated with software quality assurance. For instance, most
QATestDeveloper opportunities require knowledge on automated testing methods.
ProductManager’s candidates should have experience in agile development pro-
cesses such as scrum. By contrast, Process & Methods-based skills are not highly
demanded for development-based jobs.

Skills on Data Systems are more required for DatabaseAdministrator and
DataScientist, with 31.1% and 27.4%, respectively. Surprisingly, Development
Tools-based skills are considerably mentioned only in QATestDeveloper (22.2%)
and DevOpsDeveloper (12.6%). In fact, tools like selenium and jenkins are in the
top-5 most mentioned ones for this category.

3.5 Analyzing Soft Skills

Unlike hard skills, soft skills are only available on jobs’ textual descriptions, i.e., Stack
Overflow does not include tags for such skills. This limitation makes the act of collecting
soft skills more complex, as we have to extract them from unstructured text. We
handled this issue by first randomly selecting a sample of 376 opportunities from a
subset of 17,756 posts.2 We discarded the remaining 3,212 posts as they were not
written in English and, therefore, do not fit into our analysis. Then, three authors
manually annotated sentences that refer to soft skills, such as “good communication
skills”, “ability to work independently”, etc. In total, we extracted 1,530 sentences from
315 opportunities. Next, we generated a word cloud to identify the most common terms

2The sample size was determined after specifying a limit of 95% confidence level and 5% confidence
interval in a well-known sample size calculator, available at https://surveysystem.com/sscalc.htm.

https://surveysystem.com/sscalc.htm
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among these sentences. As some soft skills can be described using multiple words (e.g.,
“verbal communication”), we adapted the word cloud to consider bigrams as well.

Figure 3.4 depicts the word cloud for the top-100 most frequent terms. We can
observe that communication plays a central role among the most required soft skills.
Our sample allows us to conclude that 32% ± 5% of the posts in our population (i.e.,
about one in three posts) mention this skill. Collaboration-based skills also feature
a special position in this ranking. For instance, the word “team” appears in at least
22% of the jobs posts (i.e., 27%± 5%). Lastly, some companies also require experience
in problem-solving skills, as the words “analytical”, “problem solving”, or “deliver” are
present in at least one out of ten posts (i.e., 15%± 5%).
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Figure 3.4: Soft skills word cloud.

3.6 How do Skills Change Over Time?

Litecky et al. [2010] leveraged the most demanded hard and soft skills in the IT industry
between July 2007 and April 2008 through an analysis of more than 200,000 online job
opportunities. When we compare their results with ours, we observe some changes
regarding hard skills. For instance, languages such as C/C++, SQL, and Java were
frequently mentioned in 2008, as they were listed as major ones in 14 out of 20 positions
(70%). Likewise, in our study Languages is the most requested high-level hard skill
in 9 out of 14 developer roles (64%). Interestingly, no library or framework appeared
among the popular hard skills in 2008. This represents a contrast with our study, as
Libs & Frameworks are the second most demanded hard skill for six roles.

On the other hand, we observe minor changes in terms of soft skills. Litecky et al.
[2010] also show that leadership is mentioned in 20% of the opportunities. Similarly,
terms like leadership (7.6%), lead (4.0%), and leading (3.5%) are also featured among
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the most popular soft skills in our study. More recently, Sayfullina et al. [2018]—
which proposed a model to automatically extract soft skills from job ads’ description
texts—also reported similar popular keywords, e.g., responsibility, independent, flexible,
etc. Such alignment persists even in earlier works. For example, problem-solving and
communication-based skills appeared in 77% and 65% of the ads in the early 2000s,
respectively [Lee and Han, 2008]; they are still highly requested nowadays.

3.7 Threats to Validity

We identified the following issues as possible threats to our work:

Data Collection: Our results are limited by the platform we use to collect the data
for our analysis, i.e., the Stack Overflow Jobs portal. However, this study is
focused at analyzing the most demanded skills in the IT industry, and therefore
should not be generalized to other areas. Furthermore, the number of job posts
analyzed in this study reduces the bias introduced by considering the information
from one platform only.

High-level Hard Skills: We manually leveraged high-level hard skills to provide a
more robust analysis. We applied open card sorting with two researchers to
reduce the personal influence on the generated categories. We also calculated
Cohen’s Kappa to verify the inter-rater agreement between the classification of
both researchers.

Soft Skills Sample Size: We relied on a subset of job posts to perform our soft
skills analysis. To ensure the reliability of our results, the size of this sample was
determined considering well known statistical parameters, i.e., random sampling
method with 95% confidence level and 5% confidence interval.

Soft Skills Annotations: Three researchers manually annotated the sentences we
used to analyze the most popular soft skills. Although we did not rely on Co-
hen’s Kappa to verify the agreement between the annotations, the researchers
previously discussed examples of soft skills sentences in other job opportunities.

3.8 Final Remarks

With respect to candidates for IT jobs, our study reveals the distribution of the most
demanded hard skills for 14 contemporary developer roles. For example, people who are
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applying to a frontend position should describe the programming languages and libraries
& frameworks they master since 49.5% and 34.1% of the tags used by companies when
hiring such developers refer to these hard skills. Furthermore, the study confirms
the importance companies give to soft skills. The most requested ones are related to
communication, collaboration, and problem-solving.

Replication Package: The data used in this study is available at https://doi.org/
10.5281/zenodo.3906955.

https://doi.org/10.5281/zenodo.3906955
https://doi.org/10.5281/zenodo.3906955




Chapter 4

Identifying Experts in Software
Libraries and Frameworks among
GitHub Users

In this chapter, we propose a method to identify developers’ expertise level
on popular third-party software components, particularly libraries and frame-
works. We organize it into seven major sections. First, we highlight the relevance of
studying expertise in this context and present the key hypothesis behind this investiga-
tion (Section 4.1). Next, Section 4.2 documents the process we followed to collect the
data used to answer the research questions leveraged previously. Section 4.3 describes
the techniques we used in this work, as well as their setup. Section 4.4 provides the
answers we obtained from this study. We discuss in Section 4.5 our findings, lessons
learned, and limitations. This section also proposes a practical method for identifying
library experts and validates its results with Linkedin data. Finally, Section 4.6 reports
threats to validity and Section 4.7 concludes this chapter.

4.1 Introduction

Modern software development heavily depends on libraries and frameworks to increase
productivity and reduce time-to-market [Ruiz et al., 2014; Sawant and Bacchelli, 2017].
In this context, identifying experts in popular libraries and frameworks—for exam-
ple, among the members of global open-source software development platforms, like
GitHub—has a practical value. For example, open-source project managers can use
this information to search for potential new contributors to their systems. Private com-
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panies can also benefit from this information before hiring developers for their projects.
In fact, we manually inspected 1,839 job offers, available on July 2nd, 2018 at Stack
Overflow Jobs.1 We found that 789 jobs (42%) have at least one tag referring to frame-
works and libraries, including ReactJS (372 jobs), AngularJS (215 jobs), and Ruby

on Rails (135 jobs). This result suggests that companies, when hiring, often target
developers with expertise in specific programming technologies. Furthermore, this in-
formation can help to recommend experts to answer questions in Q&A forums [Treude
et al., 2011] or to assist project managers to set up balanced development teams [Siau
et al., 2010].

Previous work on software expertise focused on identifying experts for internal
parts of a software project, but not on external components, such as libraries and
frameworks. For example, Expertise Browser [Mockus and Herbsleb, 2002] visually
maps parts of a software product (e.g., code or documentation) to the respective ex-
perts, using the number of changes (commits) as the basic measure of expertise. Fritz
et al. [2007, 2010, 2014] propose the degree-of-knowledge (DOK) metric to identify ex-
perts in specific source-code files, which combines both commits and interactions with
the code through an IDE. Schuler and Zimmermann [2008] advocate that expertise
can also be gained by using the component of interest (e.g., by calling its methods).
Da Silva et al. [2015] propose a fine-grained approach to identify expertise in spe-
cific source-code elements—methods, classes, or packages. However, these works aim
to identify experts that can fix a bug, review, or evolve internal parts of a specific
software product.

In this chapter, we extend existing expertise identification approaches to the con-
text of third-party software components. Our key hypothesis is that when maintaining
a piece of code, developers also gain expertise on the frameworks and libraries used
by its implementation. We focus on three popular libraries: facebook/react (for
building enriched Web interfaces), mongodb/node-mongodb (for accessing Mon-
goDB databases), and socketio/socket.io (for real-time communication). Then,
we evaluate the use of unsupervised (based on clustering) and supervised machine
learning classifiers to identify experts in these libraries. Both techniques are applied
using features about candidate experts in each library, extracted for selected GitHub
users. These features include, for example, the number of commits on files that import
each library and the number of client projects a candidate expert has contributed to.
We also survey a sample of GitHub users to create a ground truth of developers’ ex-
pertise in the studied libraries. In this survey, the participants declared their expertise

1https://stackoverflow.com/jobs

https://stackoverflow.com/jobs
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(on a scale from 1 to 5) in the libraries. This ground truth provides the expertise of
575 GitHub developers in the studied libraries, including 418 facebook/react de-
velopers, 68 mongodb/node-mongodb developers, and 89 socketio/socket.io

developers. To validate our hypothesis, we first train and evaluate two machine learn-
ing classifiers, based on Random Forest [Breiman, 2001] and SVM (Support Vector
Machine) [Weston and Watkins, 1998]. Finally, we investigate the use of clustering
algorithms to identify library experts. We ask two research questions:

(RQ.1) How accurate are machine learning classifiers in identifying library
experts? For three expertise classes—novices, intermediate, and experts—the
maximal F-measure is 0.56 (mongodb/node-mongodb). We argue that this
poor performance is inherent in using GitHub as a full proxy for expertise. For ex-
ample, some experts rarely contribute to public GitHub projects; their expertise
comes from working on private projects or projects that are not GitHub-based.
For this reason, it is common to have both experts and novices with low fea-
ture values (e.g., commits in library clients), making it challenging to predict the
expertise of such developers, by considering their activity on GitHub.

(RQ.2) Which features best distinguish experts in the studied libraries? In
this second RQ, we first rely on clustering to identify experts that share simi-
lar feature values. In facebook/react, we found a cluster where 74% of the
developers are experts in the framework; in mongodb/node-mongodb and
socketio/socket.io we found clusters with 65% and 75% of experts, respec-
tively. More importantly, we show that the experts in such clusters tend to
be active and frequent contributors to library clients on GitHub. Therefore, this
finding suggests that GitHub data can be a partial proxy for expertise in libraries
and frameworks. By partial proxy, we mean that developers with high feature
values (commits, code churn, etc) tend to be experts in the studied libraries; by
contrast, the proxy fails in the case of developers with low feature values, who
can be both experts and novices, as concluded in RQ.1.

Our Contributions

Our contributions are threefold: (1) based on the findings and lessons learned with
RQ.1, we document the challenges of using machine learning classifiers to predict ex-
pertise in software libraries, using features extracted from GitHub; (2) inspired by
the findings of RQ.2, we propose an unsupervised method to identify library experts
based on clustering feature data from GitHub; by triangulating the results of this
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method with expertise information available on Linkedin, we show that it is able to
recommend dozens of GitHub users with robust pieces of evidence of being experts in
facebook/react, a popular JavaScript library; (3) we provide a public ground truth
with the expertise of 575 developers that can be used as a baseline to evaluate other
solutions; indeed, we already observe a few works relying on this dataset to conduct
their research [Eke, 2020; Vadlamani and Baysal, 2020; Dey et al., 2021].

4.2 Data Collection

4.2.1 Definitions

Before presenting the data collection process, we define key terms used in this process
and also in the rest of this chapter:

Target Library: The JavaScript libraries used in this study; our goal is to identify
experts in these libraries based on their activity on GitHub.

Client Project (or File): A project (or source code file) that depends on a target
library.

Candidate Expert: A contributor of a client project whose expertise on a target
library is assessed in this study.

Feature: An attribute of a candidate expert that may act as a predictor of its expertise
on a target library.

Ground Truth: A dataset with the expertise of candidate experts in a target library,
as self-reported by them.

4.2.2 Target Libraries

We evaluate JavaScript libraries due to the importance and popularity of this language
in modern software development. Particularly, JavaScript is the most popular language
on GitHub; around 34% of the most popular projects on GitHub are implemented
in JavaScript [Avelino et al., 2016]. We focus on the developers of three JavaScript
libraries:2

1. facebook/react: A system for building enriched Web interfaces. The project
source code can be found at https://github.com/facebook/react.

2In our study, the terms libraries and frameworks are used interchangeably.

https://github.com/facebook/react
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2. mongodb/node-mongodb: the official Node.js driver for MongoDB database
server. The project is available at https://github.com/mongodb/node-

mongodb-native.

3. socketio/socket.io: a library for real-time communication. The source code
of the project is available at https://github.com/socketio/socket.io.

We start by selecting facebook/react because it is a very popular front-
end development library. After making this first selection, we searched for libraries
handling important concerns in back-end development and selected mongodb/node-

mongodb, a persistence library. Finally, we choose socketio/socket.io since com-
munication is important both in front-end and back-end programming.

Table 4.1: Target Libraries

Target Library Stars Contributions Commits Files

facebook/react 91,739 1,171 9,731 797
mongodb/node-mongodb 6,696 260 4,565 617
socketio/socket.io 40,199 149 1,698 83

Table 4.1 shows information about these systems, including the number of stars,
contributors, commits, and files (in April 2018). As we can see, they are popular
projects (at least 6,696 stars) and actively maintained (at least 149 contributors and
1,698 commits). For brevity, we call them react, node-mongodb, and socket.io

in the rest of this chapter.

4.2.3 Candidate Experts

For each target library L, where L is react, node-mongodb, or socket.io, we
selected a list of candidate experts, as described next. First, we relied on the top-10K
most popular JavaScript projects on GitHub, according to their number of stars. We
checked out these projects and searched for dependencies to L in package.json and
bower.json files, which are configuration files used by two popular JavaScript package
managers. A candidate expert in L is a developer who performed at least one change
in a source code file (from a client project) that depends on L. In other words, we
assume that if a developer changed a file that imports L he has chances to be an expert
in this library. Next, we removed aliases from this initial list of candidate experts, i.e.,
the same developer, but with distinct e-mails on the considered commits. For this
purpose, we used a feature of GitHub API that maps a commit’s author to its GitHub

https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native
https://github.com/socketio/socket.io
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account. Using this feature, we mapped each developer in the list of candidate experts
to his/her GitHub’s account. Candidate experts e and e′ are the same when they share
the same GitHub account.

Table 4.2: Client Projects and Candidate Experts

Library Clients Experts

facebook/react 1,136 8,742
mongodb/node-mongodb 223 454
socketio/socket.io 345 608

Table 4.2 shows for each target library the number of client projects and the final
number of candidate experts after handling aliases. As we can observe, react has the
highest number of both client projects (1,136) and candidate experts (8,742). There-
fore, our dataset includes a popular target library, with thousands of client projects and
candidate experts; but it also includes less popular libraries, with just a few hundred
candidate experts.

4.2.4 Features

We collected 13 features for each candidate expert who was selected in the previous
step. As documented in Table 4.3, these features cover three dimensions of changes
performed on client files: Volume, Frequency, and Breadth. These dimensions and
their features were derived and extended from the literature on developers’ expertise
in open source communities. For instance, the volume of changes is commonly used
in related works [Mockus and Herbsleb, 2002; Fritz et al., 2007, 2010, 2014]. Likewise,
frequency and breadth of changes have also been considered as proxies to developers’
expertise [Dabbish et al., 2012; Singer et al., 2013; Da Silva et al., 2015; Sarma et al.,
2016; Avelino et al., 2019b]. As an additional criterion, we only use features that can
be directly computed from the GitHub public API.

Volume of changes: Includes six features about the number of changes performed by
candidate experts in client projects, such as commits and code churn (e.g., lines
added or deleted). We conjecture that by heavily maintaining a file developers
gain expertise on libraries used by its implementation.

Frequency of changes: Encompass five features expressing the frequency and time
of the changes performed by candidate experts, e.g., the number of days since
first and last library import. The rationale is that expertise also depends on the
temporal properties of the changes.
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Table 4.3: Features collected for each candidate expert in each target library

Dimension Feature Description
commits Number of commits in client projects
commitsClientFiles Number of commits changing at least one

client file
commitsImportLibrary Number of commits adding library im-

port statements
codeChurn Code churn considering all commits in

client projects
codeChurnClientFiles Code churn considering only changes in

client files

Volume

imports Number of added library import state-
ments

daysSinceFirstImport Number of days since the first commit
where a library import statement was
added

daysSinceLastImport Number of days since the last commit
where a library import statement was
added

daysBetweenImports Number of days between the first/last
commits where a library import state-
ment was added

avgDaysCommitsClientFiles Average interval (in days) of the commits
changing client files

Frequency

avgDaysCommitsImportLibrary Average interval (in days) of the commits
adding library import statements

projects Number of client projects the developer
contributed at least onceBreadth projectsImport Number of client projects where the de-
veloper added a library import statement

Breadth of changes: Includes two features about the number of client projects the
candidate experts worked on. The rationale is that expertise might increase when
candidate experts work on different client projects.

The features are collected from client projects where the candidate experts con-
tributed with at least one commit. In more detailed terms, suppose a candidate expert
c; suppose also that Proj c are the projects where c has made at least one commit (this
set is provided by GitHub API). We iterate over Proj c to create a subset CliProj c

containing only projects that depend on the target libraries. The features collected
for c are extracted from CliProj c. After collecting this data, we found that 69% of
react’s candidate experts worked on a single client project; for node-mongodb and
socket.io, this percentage increases to 88% and 87%, respectively. By contrast, we
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found candidate experts working on 26 projects (react), 5 projects (node-mongodb)
and 12 projects (socket.io).

4.2.5 Ground Truth

To create a ground truth with developers’ expertise on each target library, we sur-
veyed the candidate experts identified in Section 4.2.3. For react, which has 8,742
candidate experts, we sent the survey to a random sample of 2,185 developers (25%).
For node-mongodb and socket.io, which have less candidates, we sent the survey
to all candidate experts identified in Section 4.2.3, i.e., to 454 and 608 developers,
respectively. For each target library, we e-mailed the candidate experts, describing our
research purpose and asking the following single question:

Could you please rank your expertise on [target library] in a scale from 1
(novice) to 5 (expert)?

Table 4.4 summarizes the number of e-mails sent, the number of received answers,
and the response ratio. The number of answers range from 68 (node-mongodb) to 418
(react) and the response ratio ranges from 15% (socket.io and node-mongodb)
to 19% (react).

Table 4.4: Survey Numbers

Library Mails Answers Ratio

facebook/react 2,185 418 19%
mongodb/node-mongodb 454 68 15%
socketio/socket.io 608 89 15%

Figure 4.1 shows the distribution of the survey answers. For react, 254 candi-
dates (61%) ranked themselves as experts in the library (scores 4–5); 110 candidates
(26%) declared an intermediate expertise (score 3), and 54 candidates (13%) consid-
ered themselves as having a limited expertise (scores 1–2). For node-mongodb, the
results are 40% (experts), 34% (intermediate expertise), and 26% (limited expertise).
For socket.io, the results are 24%, 36%, and 40%, respectively.

Ground Truth Limitations: The proposed ground truth is based on the developers’
perceptions about their expertise in the target libraries. Therefore, it is subjected
to imprecisions and noise, since it is not realistic to assume the survey participants
ranked themselves according to uniform and objective criteria. For example, some
developers might have been more rigorous in judging their expertise, while others may
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Figure 4.1: Survey answers

have omitted their lack of experience on the studied libraries (see the Dunning-Kruger
Effect [Kruger and Dunning, 1999]). In order to try to reduce these issues, we made it
clear to the participants that our interests were strictly academic and that we will never
use their answers for commercial purposes. Finally, it is also worth mentioning that
previous research has shown that self-estimation is a reliable way to measure general
programming experience, at least in a student population [Siegmund et al., 2014].

4.2.6 Final Processing Steps

We performed the following processing steps on the features collected for the developers
that answered our survey:

Missing Values: Missing values occur when it is not possible to compute a feature
value. In our dataset, there are four features with missing values: daysSince-
FirstImport, daysSinceLastImport, daysBetweenImports, and avgDaysCommit-
sImportLibrary. For these features, a missing value appears in candidate experts
who have added an insufficient number of import statements to a client project
(e.g., imports = 0). The percentage of candidate experts with missing values for
these four features is relevant, as they appear in 45% of the surveyed developers.
To handle such cases, we replaced missing values at daysSinceFirstImport and
daysSinceLastImport by a zero value, because candidate experts without import
statements should not be viewed as long time library users. By contrast, missing
values at avgDaysCommitsImportLibrary were replaced by the maximal observed
value, because the respective candidate experts should have the highest values
when compared to those who effectively added import statements. Finally, days-
BetweenImports needs at least two imports to be calculated correctly. Therefore,
we assigned a zero value when imports = 1, and −1 when imports = 0. Actu-
ally, we tested different strategies for missing values, such as discarding all fields
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with missing values, applying different values, etc. However, the results never
exceeded the ones based on the values proposed in this paragraph.

Removing Correlated Features: Correlated features may contribute to inaccurate
classifications due to their high association degree [Yu and Liu, 2003; Chen et al.,
2005]. To tackle this issue, we first used the cor 3 function from R’s stats package
to compute a matrix with Pearson4 coefficients for each pair of features. Then,
we used the findCorrelation5 function from R’s caret package to identify pairs
of features with a correlation greater than 0.7, as previously adopted in the
literature [Bao et al., 2017]. In such cases, we discarded the feature that has the
highest correlation rate when compared to the other ones. Figure 4.2 shows a
heatmap that summarizes this process. Red cells are features discarded due to
a high correlation with another feature; gray cells denote features preserved by
the correlation analysis, i.e., they are used in the classification process. As we
can see, two features are correlated with at least one other feature, regardless
the target library: commitsImportLibrary and projectsImport. As a result of this
analysis, six, four, and five features were discarded at react, node-mongodb,
and socket.io, respectively.
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Figure 4.2: Correlation analysis; red cells are discarded due to high correlation.

Skewed Feature Values Features with skewed distributions may impact the perfor-
mance of machine learning classifiers [Kuhn and Johnson, 2013; Zumel et al.,
2014]. We assume that skewed feature distributions are the ones where the
mean—computed for the candidate experts included in the ground truth of a

3https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/cor
4We executed our model applying both Pearson and Spearman coefficients, achieving better results

with the former.
5https://www.rdocumentation.org/packages/caret/versions/6.0-79/topics/

findCorrelation

https://www.rdocumentation.org/packages/stats/versions/3.4.3/topics/cor
https://www.rdocumentation.org/packages/caret/versions/6.0-79/topics/findCorrelation
https://www.rdocumentation.org/packages/caret/versions/6.0-79/topics/findCorrelation
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given target library—is at least four times greater than the median. By following
this definition, four, six, and four features have a skewed behavior in react,
node-mongodb, and socket.io, respectively. On the values of such features,
we applied a log transformation, as in another machine learning study [Chulani
et al., 1999].

4.3 Methods

In this section, we discuss the setup of the machine learning and clustering models,
used on RQ.1 and RQ.2, respectively.

4.3.1 Machine Learning Setup and Algorithms

Number of Classes

Machine learning algorithms require a minimal number of samples on each class (or
scores, in our terminology) [Raudys and Jain, 1991]. However, this condition is not
followed by our data. For example, for react we collected expertise data about 418
developers, but only 24 developers (6%) ranked themselves with a score of 2. To
attenuate this problem, we train and evaluate our models under two scenarios: (1)
considering all five classes; (2) by transforming the data into the following ternary
classification: novice (scores 1–2), intermediate (score 3), and experts (scores 4–5).
Furthermore, we only evaluate the scenario with five classes for react. The reason
is that node-mongodb and socket.io have fewer data points; for example, both
libraries have classes with less than 10 samples.

Informed Over Sampling (SMOTE)

Besides having a few samples for some classes, the ground truth is largely imbalanced,
as illustrated in Figure 4.1. For example, 87% of the react developers ranked them-
selves as having some knowledge on the framework (scores 3–5). It is well-known that
machine learning classifiers tend to produce poor results when applied to imbalanced
datasets [Japkowicz and Stephen, 2002]. To tackle this problem, we used a tech-
nique called Informed Over Sampling (SMOTE) [Chawla et al., 2002], which balances
a dataset by producing and inserting synthetic but similar observations to minority
classes (but only in the training part of the dataset). SMOTE was previously used in
machine learning approaches to several software engineering problems, including defect
prediction [Tan et al., 2015], mobile apps analysis [Li et al., 2016], self-admitted tech-
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nical debt detection [Zampetti et al., 2017], and identification of security issues from
commit messages and bug reports [Zhou and Sharma, 2017]. In our problem, we used
SMOTE over the minority class, in both scenarios. SMOTE has two parameters: the
number of the nearest neighbors (KNN) and the percentage of synthetic instances to
create. After some initial tests, we set up these parameters to 3 and 30%, respectively.
This setup results in a minority class increased by 30%, and the new data points are
synthesized by considering 3-nearest neighbors of the existing ones (KNN parameter).

Machine Learning Classifiers

We evaluate two well-known machine learning classifiers: Random Forest [Breiman,
2001] and SVM [Weston and Watkins, 1998]. We compare the results of these classi-
fiers with a ZeroR baseline, which simply predicts the majority class, ignoring all fea-
ture values. We do not compare with previous expertise identification methods (e.g.,
[Mockus and Herbsleb, 2002; Fritz et al., 2007, 2010, 2014; Schuler and Zimmermann,
2008]) because they are not proposed to measure expertise on libraries and frameworks,
but on internal elements of a software project. We use k-fold stratified cross-validation
to evaluate the results of these classifiers. Stratified cross-validation is a variant of
k-fold cross-validation where folds contain approximately the same proportion of each
class. We set k to 5, to avoid testing models in small folds, particularly in small classes,
as occur in node-mongodb and socket.io. Another important step is the tuning
of the classifier’s parameters. We rely on a grid search strategy for hyper-parameters
with cross-validation to find the best parameter settings for each classifier [Claesen and
Moor, 2015].

Evaluation Metrics

We evaluate the classifiers using precision, recall, F-measure, and AUC (Area Under
the Receiver Operating Characteristic Curve). To compute AUC, we use an implemen-
tation recommended for multi-class classifications. This implementation is provided as
an R package by Microsoft Azure’s data science team.6 Further, to compute F-measure,
we first compute the average precision and recall, considering all classes. The reported
F-measure is the harmonic mean of the average precision and average recall. We also
report Cohen’s kappa, which is also a measure of classifier performance, particularly
useful on imbalanced datasets [Landis and Koch, 1977].

6https://github.com/Azure/Azure-MachineLearning-DataScience

https://github.com/Azure/Azure-MachineLearning-DataScience
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4.3.2 Clustering Setup and Algorithm

We use clustering to investigate more closely the relation of feature values and library
expertise (RQ.2 ). For this purpose, we use k-means, which is a widely popular clus-
tering algorithm. In software engineering, k-means was used to support many tasks,
including detecting mobile apps with anomalous behavior [Gorla et al., 2014], test case
prioritization [Arafeen and Do, 2013], and to characterize build failures [Vassallo et al.,
2017]. A key challenge when using k-means is to define the appropriate number k of
clusters. There are methods proposed to help on this task, such as the elbow [Ng, 2000]
and silhouette methods [Rousseeuw, 1987]. However, they also depend on interpreta-
tion and subjective decisions [Ng, 2000].

For this reason, we follow an alternative procedure, as described next. We execute
k-means multiple times, starting with k = 2 and incrementing it after each execution.
For each k, we analyze the resulting clusters, searching for clusters dominated by
experts. For react, we search for clusters with at least 70% of experts (since react

has a higher percentage of experts in the ground truth, close to 61%); for node-

mongodb and socket.io—which have fewer experts, 40% and 24%, respectively—
we search for clusters with at least 60% of experts. We stop after finding at least one
cluster attending the proposed thresholds.

Table 4.5 shows data on each execution; for each k, it shows the percentage of
experts of the cluster with the highest percentage of experts. For react, we select 3
clusters, since it leads to a cluster with 74% of experts. For node-mongodb, we also
select 3 clusters, including a cluster with 65% of experts. For socket.io, there are 5
clusters and one has 75% of experts.

Table 4.5: Cluster with the highest percentage of experts (values in bold define the
selected number of clusters)

Library k
2 3 4 5

react 66 74 - -
node-mongodb 57 65 - -
socket.io 39 44 44 75
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4.4 Results

(RQ.1) How accurate are machine learning classifiers when

used to identify library experts?

Table 4.6 presents the results of the machine learning classifiers for five classes. The
results are provided only for react, since node-mongodb and socket.io do not
have sufficient samples to perform a classification using five classes, as explained in
Section 4.3.1. For almost all performance metrics and classifiers, the results are not
good. For example, kappa is 0.09 and AUC is 0.56 for Random Forest. Precision
ranges from 0.00 (Novice 2, SVM) to 0.50 (Expert 4, Random Forest). F-measure is
0.24 (Random Forest) and 0.15 (SVM), against 0.13 with the ZeroR baseline.

Table 4.6: Machine learning results for 5 classes (facebook/react)

RForest SVM Baseline

Kappa 0.09 0.05 0.00
AUC 0.52 0.53 0.50
Precision (Novice 1) 0.25 0.00 0.00
Precision (Novice 2) 0.07 0.00 0.00
Precision (Intermediate) 0.35 0.23 0.00
Precision (Expert 4) 0.50 0.48 0.46
Precision (Expert 5) 0.29 0.00 0.00
Recall (Novice 1) 0.07 0.00 0.00
Recall (Novice 2) 0.04 0.00 0.00
Recall (Intermediate) 0.27 0.10 0.00
Recall (Expert 4) 0.77 0.98 1.00
Recall (Expert 5) 0.10 0.00 0.00
F-measure 0.24 0.15 0.13

Table 4.7 presents the results for three classes (scores 1–2, score 3, scores 4–
5). First, we discuss the results of Random Forest. For this classifier, kappa varies
from 0.09 (react) to 0.35 (node-mongodb); AUC ranges from 0.56 (react) to 0.70
(node-mongodb). Precision results are greater for experts than for novices, both
for react (0.65 vs 0.14) and node-mongodb (0.61 vs 0.60), while socket.io has
the highest precision for novices (0.52). Recall ranges from 0.09 (react, novices) to
0.83 (react, experts). F-measure is 0.36 (react), 0.56 (node-mongodb), and 0.42
(socket.io). By contrast, the baseline results for F-measure are 0.25 (react) and
0.19 (node-mongodb and socket.io). In the same scenario, SVM results are in 13
out of 27 combinations of metrics and libraries lower than the ones of Random Forest.
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Table 4.7: Results for 3 classes: novice (scores 1–2), intermediate (score 3), and expert
(scores 4–5)

RForest SVM Baseline

facebook/react
Kappa 0.09 0.02 0.00
AUC 0.55 0.53 0.50
Precision (Novice) 0.35 0.10 0.00
Precision (Intermediate) 0.28 0.00 0.00
Precision (Expert) 0.65 0.61 0.61
Recall (Novice) 0.16 0.04 0.00
Recall (Intermediate) 0.16 0.00 0.00
Recall (Expert) 0.82 1.00 1.00
F-measure 0.38 0.27 0.25

mongodb/node-mongodb
Kappa 0.32 0.21 0.00
AUC 0.67 0.55 0.50
Precision (Novice) 0.58 0.37 0.00
Precision (Intermediate) 0.47 0.35 0.00
Precision (Expert) 0.59 0.55 0.40
Recall (Novice) 0.50 0.38 0.00
Recall (Intermediate) 0.52 0.21 0.00
Recall (Expert) 0.63 0.79 1.00
F-measure 0.53 0.41 0.19

socketio/socket.io
Kappa 0.16 0.24 0.00
AUC 0.62 0.70 0.50
Precision (Novice) 0.48 0.52 0.40
Precision (Intermediate) 0.36 0.59 0.00
Precision (Expert) 0.45 0.49 0.00
Recall (Novice) 0.53 0.61 1.00
Recall (Intermediate) 0.28 0.38 0.00
Recall (Expert) 0.58 0.52 0.00
F-measure 0.44 0.47 0.19

For five classes, machine learning classifiers have a maximal F-measure of 0.24
(react). For three classes, F-measure reaches 0.56 (node-mongodb) and preci-
sion on identifying experts reaches 0.65 (react, experts).
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(RQ.2) Which features best distinguish library experts?

First, Table 4.8 shows the percentage of novices (scores 1–2), intermediate (score 3),
and experts (scores 4–5) in the clusters of each library. The table also shows the
number of developers in each cluster. As defined in Section 4.3.2, for react and node-

mongodb, we have 3 clusters; for socket.io, we have 5 clusters. In Table 4.8, the
clusters are sorted by percentage of experts. Therefore, Cluster 1 is the experts’ cluster
in each library. In react, 74% of the developers in this cluster ranked themselves
as experts and only 3% as novices. For node-mongodb and socket.io, Cluster
1 includes 65% and 75% of experts, respectively. By contrast, it has only 12% and
0% of novices, respectively. The number of developers in the experts’ cluster ranges
from 4 (socket.io) to 97 developers (react). However, the ground truth has also
more react experts (254 vs 21 developers, respectively). Interestingly, in socket.io,
Cluster 5 should be viewed as a novice’s cluster; 67% of its members are novices and
the cluster does not include any expert.

Table 4.8: Clustering results (cluster 1 has the highest % of experts)

Cluster % Novices % Intermediate % Experts # Devs

facebook/react
C1 0.03 0.23 0.74 97
C2 0.12 0.28 0.60 129
C3 0.18 0.27 0.55 192

mongodb/node-mongodb
C1 0.12 0.24 0.65 17
C2 0.21 0.43 0.36 14
C3 0.35 0.35 0.30 37

socketio/socket.io
C1 0.00 0.25 0.75 4
C2 0.29 0.36 0.36 28
C3 0.33 0.33 0.33 15
C4 0.50 0.40 0.10 30
C5 0.67 0.33 0.00 12

In the three studied libraries, there are clusters dominated by experts. These
clusters have 74% (react), 65% (node-mongodb), and 75% (socket.io) of
experts.
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We also compare the distributions of feature values, for the developers in each
cluster. For each feature F , we compare F ’s distribution in Cluster 1 (experts) with
the cluster whose median of F ’s distribution is closest to the one of Cluster 1. In other
words, this cluster tends to be the most similar to Cluster 1, among the remaining
clusters; our goal is to assess the magnitude (effect size) and direction of this similarity.
First, we use a Mann-Whitney test to confirm that the distributions of F ’s values in
both clusters are statistically distinct, assuming a p-value of 0.05. Furthermore, and
more interestingly, we measure the magnitude and direction of the difference, using
Cliff’s delta. As in other works [Grissom and Kim, 2005; Romano et al., 2006; Linares-
Vásquez et al., 2013; Tian et al., 2015], we interpret Cliff’s delta as negligible for
d < 0.147, small for 0.147 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474, and large for
d ≥ 0.474.

Table 4.9 shows the results. For react, there is a large difference for the distri-
butions of all features in Cluster 1, with the exception of daysSinceFirstImport, which
has a medium effect size. The direction is mostly positive (+), i.e., developers in Clus-
ter 1 have higher feature values than the ones in the second most similar cluster (in
summary, they are more active on client files). The exception regards the distributions
of avgDaysCommitsClientFiles, i.e., experts tend to commit more frequently to react

client files—in lower time intervals—than developers of the second cluster. In general,
the results for node-mongodb follow the same patterns observed for react; the main
exception is that a medium difference is observed for daysSinceLastImport. However,
in the case of socketio/socket.io there is a major change in the statistical tests.
First, Cliff’s delta reports a large difference for a single feature: number of projects
the developers have committed to (projects). According to Mann-Whitney tests, the
remaining feature distributions are statistically indistinct.

To visually illustrate these results, Figure 4.3 shows violin plots with the distribu-
tion on each cluster of commitsClientFiles, for the three studied libraries. We can see
a large difference between the distributions of Cluster 1 and Cluster 2, both for react

and node-mongodb. By contrast, for socket.io, there is no clear difference between
the distributions of Cluster 1 and Cluster 3 (cluster with the median closest to Cluster
1). Finally, Figure 4.4 shows boxplots with projects distribution for socket.io. In
this case, we can see a clear difference between Cluster 1 (1st quartile is 8 projects; the
median is 8.5 projects) and Cluster 3 (1st quartile is one project; the median is two
projects).
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Table 4.9: Comparing feature distributions using Cliff’s delta: Experts vs Cluster
with the closest median (◦ means similar distributions, according to Mann-Whitney,
p-value= 0.05)

Feature Effect size Relationship

facebook/react
codeChurnClientFiles large +
commitsClientFiles large +
imports large +
daysSinceLastImport large +
daysSinceFirstImport medium +
avgDaysCommitsClientFiles large −
projects large +

mongodb/node-mongodb
codeChurn large +
commits large +
commitsClientFiles large +
imports large +
daysBetweenImports large +
daysSinceLastImport medium +
avgDaysCommitsClientFiles large −
avgDaysCommitsImportLibrary large −
projects large +

socketio/socket.io
codeChurn ◦ ◦
codeChurnClientFiles ◦ ◦
commits ◦ ◦
commitsClientFiles ◦ ◦
daysSinceLastImport ◦ ◦
avgDaysCommitsClientFiles ◦ ◦
avgDaysCommitsImportLibrary ◦ ◦
projects large +

For react and node-mongodb, developers in the experts cluster are more active
on GitHub than developers in other clusters, regarding most features. However, for
socket.io, experts are only distinguished by the number of projects they worked
on.

To conclude, it is important to mention that the feature values are different for
experts in each library. For example, experts in facebook/react (Cluster 1) perform
84 commits at client files, against 24 commits for node-mongodb’s experts (median
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Figure 4.3: Distributions of commitsClientFiles values for each cluster/library. Cluster
1 (experts) has higher values than other clusters, except for socket.io.
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Figure 4.4: Distributions of projects values for socket.io clusters. Cluster 1 (experts)
has higher values than other clusters.

values, see Figure 4.3). We hypothesize that react is a more complex framework than
node-mongodb, besides targeting a different domain. As a result, it is no trivial to
define feature thresholds to classify experts; furthermore, these thresholds should not
be reused across libraries.

4.5 Discussion and Practical Usage

In this section, we summarize our key findings; we also discuss the practical usage and
limitations of the machine learning and clustering methods investigated in this work.

4.5.1 Relevance and Key Findings

In the survey to create the ground truth, we only asked for a score (in a 5-point scale).
Despite that, we received some comments about the relevance of methods to predict
developers expertise in specific programming technologies, as in the following answers:

What you are doing sounds very interesting and worthwhile to the devel-
oper’s community at large. (P021)

Technical recruiting seems to be an extremely valid use-case for accurately
assess the skills of devs based on their GitHub contributions, which could
lead to a profitable product. (P183)
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We associate the high number of responses received in the survey (575 answers) to
the relevance and potential practical value of the problem we proposed to investigate,
which was rapidly viewed in this way by the surveyed GitHub users.

As mentioned in one of the previous answers, the main interest of companies is on
accurately identifying experts in a given programming technology. In this particular
context, precision is more important than recall, since companies do not need to identify
all skilled engineers in a given technology, but only a few of them. When approach-
ing the problem using machine learning classifiers, we achieved a maximal precision
of 65% for the experts class (scores 4–5, Random Forest, react). In the same sce-
nario, the baseline precision is 0.61. Therefore, this result casts doubts on the practical
value of using machine learning in this problem. By contrast, when using unsupervised
techniques, based on clustering (k-means), we were able to identify clusters with 74%
(react), 65% (node-mongodb), and 75% (socket.io) of experts. If we consider
that predicting expertise on programming technologies is a relevant but challenging
problem, we claim that precision values close to 70%—across multiple libraries—can
sustain the practical adoption of automatic classifiers based on features extracted from
GitHub activity. Even so, unsupervised techniques should be carefully used, as their
gains may vary according to the library (see react clusters). It is also worth men-
tioning that such classifiers do not replace but complement traditional mechanisms for
assessing developers’ expertise, like interviews and curriculum analysis.

4.5.2 Practical Usage

Suppose a library L with developers grouped in clusters C1, . . . , Cn, after following the
methodology proposed in this study. Suppose that C1 groups the experts in L. Given
these clusters, suppose we want to assess the expertise of a new developer d on L,
e.g., we are part of a company that heavily depends on L and we want to assess the
expertise of d in this library, before hiring her. In this case, we should retrieve the
feature vector Fd for d, based on her activities on GitHub. Then, we compute the
Euclidean distance between Fd and the centroid of each cluster Ci, for i = 1, . . . , n. If
the smallest distance is found between Fd and C1’s centroid, we can assume that d is
more similar to the experts in L and therefore she has high chances of also being an
expert in this library. Otherwise, our method fails to predict d’s expertise in L, i.e.,
she can be or not an expert. It is also straightforward to identify expertise in multiple
libraries. In this case, we only need to compute the intersection of experts in each
library.
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4.5.3 Triangulation with Linkedin Profiles

To provide preliminary evidence on the value of the procedure described in the previ-
ous section to identify experts, we triangulated its results with expertise information
available on Linkedin, starting with react experts. First, we mapped each react

developer who did not answer our survey—and therefore was not considered at all in
RQ.1 and RQ.2—to one of the clusters produced for react, as discussed before. 263
(out of 2,129 developers, 12%) were mapped to the experts’ cluster. After that, we
manually searched for the Linkedin page of these developers, looking for their names
and possibly e-mails on Linkedin (when available, we also compared the profile photos,
at Linkedin and GitHub). We were able to find the Linkedin profile of 160 devel-
opers (61%). Finally, we manually examined these profiles, searching for shreds of
evidence of expertise on react. 115 developers (72%) explicitly refer to react on
their Linkedin short bio, on the description of the projects they worked on, or in the
list of programming technologies they have skills on. We also assessed the experience
of these developers as Web developers, by calculating the number of years on jobs di-
rectly related to Web programming. Figure 4.5 shows a violin plot with the results.
As we can see, 50% of the developers predicted as experts have more than four years
of experience in Web-related jobs.

4.38

0 10 20
Experience (Years)

Figure 4.5: Years of experience on react of developers predicted as experts

We reproduced this analysis with node-mongodb and socket.io. For node-

mongodb, 44 out of 58 developers predicted as experts by the proposed method have
pages on Linkedin; for socket.io, this happens with 5 out of 10 experts. Furthermore,
28 of such experts (64%) explicitly mention MongoDB on their Linkedin pages; and
one developer (20%) refer to socket.io. Therefore, both proportions are lower than
the one we reported for react. We claim this happens because node-mongodb and
socket.io are simple and less complex libraries when compared with react. For
this reason, developers usually do not cite them on Linkedin. For example, one of the
experts in socket.io declare on his GitHub profile that he is one of the library’s core
developers; but this information is not available on his Linkedin profile. Due to this
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reason, we also do not evaluate the years of experience of Linkedin users on socket.io

and node-mongodb.
Altogether, this triangulation with Linkedin shows that the proposed clustering-

based method was able in most cases to find several GitHub developers with evidence
of having experience in the studied libraries. However, before concluding, it is also im-
portant to acknowledge that expertise and experience are distinct concepts; indeed, the
experience is normally viewed as a necessary condition to achieve expertise [Ericsson,
2006; Baltes and Diehl, 2018].

4.5.4 Limitations

Certainly, developers can gain expertise on libraries and frameworks by working on
private projects or in projects that are not on GitHub, as highlighted by these devel-
opers:

None of my projects are publicly on GitHub. (P037, score 4)

My GitHub is not very representative of my skills . . .Most of my work is
done privately. (P374, score 2)

My work on GitHub isn’t my strongest. My much larger projects are at work
and aren’t open source. (P503, score 4)

Thus, the lack of public activity on GitHub is a major obstacle for achieving
high recall using methods like the one proposed in this work. However, as mentioned
before, precision tends to be more important in practical settings than recall. If we
focus on precision, the proposed clustering method is effective on identifying experts
among GitHub users that frequently contribute to client projects.

To illustrate this discussion, Figure 4.6 shows histograms with the percentage of
react experts in each quintile of the feature distributions (0%–19%, 20%–39%, etc).
We can observe an important concentration of experts in the first and second quintiles,
for features like codeChurnClientFiles (26%), commitsClientFiles (37%), and projects
(57%). In other words, the histograms confirm the comments of the survey participants,
showing that it is common to have experts with sparse activity on GitHub. Indeed, this
behavior explains the poor performance of machine learning supervised classifiers in our
context, as observed in RQ.1. By construction, these classifiers predict the expertise
of all developers in the ground truth. Therefore, the presence of experts at both ends
of the distributions showed in Figure 4.6 is a major challenge to their performance.
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Figure 4.6: Percentage of react experts by quintiles of feature distributions. For most
features, there is an important proportion of experts in lower quintiles.

Typically, these classifiers are not able to provide an unknown answer, as we discussed
in Section 4.5.2.

How to improve the current precision results: We envision two main works that
can improve the current results, particularly the precision of the experts class. First,
one promising work is to expand the ground truth, which can contribute to reducing
its imbalanced behavior. Particularly, according to the methodology followed in the
study, the candidate experts are retrieved from the developers of the top-10K most
popular GitHub projects, by their number of stars. Therefore, a natural extension is
to consider candidate experts from a large base of GitHub projects (e.g., top-100K
projects). Second, we can also include new features in the current setup, possibly
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extracted from other data sources besides GitHub. For example, we can consider
features extracted from Stack Overflow or TopCoder (a software development crowd-
sourcing platform with an online community of over 1M crowd software workers [Saremi
et al., 2017]).

4.6 Threats to Validity

Target Libraries: We mined experts in three popular JavaScript libraries. Thus, it
is not possible to fully generalize our findings to experts of other libraries and
frameworks.

Candidate Experts: Our list of candidate experts was extracted from an initial list
with the top-10K most starred GitHub projects (see Section 4.2.3). We acknowl-
edge that our results might be impacted if we expand or reduce this initial list.

Alias Handling: The method used for detecting aliases in the initial list of candi-
date experts (see Section 4.2.3) do not distinguish developers that have multiple
GitHub accounts, i.e., they are considered distinct developers. Therefore, further
analysis is required to quantify the incidence of such accounts.

Ground Truth: Another threat is related to mislabeled classes, due to personal opin-
ions of the surveyed developers, as discussed in Section 4.2.5. However, we sur-
veyed 575 developers and some level of mislabeling would not interfere in our
results since the selected algorithms are robust to label noises. Furthermore, to
tackle the imbalanced behavior of our ground truth, we used a technique called
SMOTE, commonly used on several software engineering problems [Tan et al.,
2015; Li et al., 2016; Zampetti et al., 2017; Zhou and Sharma, 2017]. But we
acknowledge that there are other techniques , such as over-sampling and cost-
sensitive methods [He and Garcia, 2009; Chicco, 2017].

Number of Clusters: The selection of the optimal number of clusters is a central
issue in partitioning clustering (e.g., k-means). This task is somehow subjective
and its result depends on which method is used to measure similarities among
objects (as discussed in Section 4.3.2). For this reason, we follow an expert-driven
measure to detect clusters dominated by experts.

Triangulation with Linkedin: This analysis fundamentally depends on the accu-
racy of the information provided by Linkedin users. Moreover, Linkedin data
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tends to reveal experience, but not expertise in programming technologies. De-
spite that, we claim it can be used as a first proxy to the task of identifying
experts on software libraries and frameworks.

Machine Learning Models: To attenuate the bias of our results, we rely on 5-fold
cross-validation and compute the average performance. In addition, we use grid
search with cross-validation to tune hyper-parameters, both for Random Forest
and SVM models.

Evaluation Metrics: Standard performance metrics (recall, precision, F-measure,
and AUC) can provide misleading information on imbalanced datasets with mul-
tiple classes. For this reason, we showed results for each class, separately. Fur-
thermore, we evaluated the models using Cohen’s kappa, which is a metric par-
ticularly useful on imbalanced datasets.

4.7 Final Remarks

Companies often hire based on expertise in libraries and frameworks, as we found in
the tags of Stack Overflow jobs. In this chapter, we investigated the usage of clustering
and machine learning algorithms to identify library experts, using public GitHub data.
First, we found that standard machine learning classifiers (e.g., Random Forest and
SVM) do not have a good performance in this problem, at least when they are trained
with all developers from a sample of GitHub users. The main reason is that not
all experts have a strong presence on GitHub. By contrast, we can use clustering
techniques to identify experts with high activity on GitHub projects that depend on
particular libraries and frameworks. Particularly, we found clusters with 74% (react),
65% (node-mongodb), and 75% (socket.io) of experts. Supported by these results,
we proposed a method to identify library experts based on their similarity (in terms of
feature data) to a cluster previously labeled as including a high proportion of experts.

Replication Package: Our data—in a fully anonymized format—and scripts are
publicly available at: https://doi.org/10.5281/zenodo.1484498.

https://doi.org/10.5281/zenodo.1484498


Chapter 5

Mining the Technical Roles of
GitHub Users

In this chapter, we aim at mining software developers’ technical skills at a higher level.
More specifically, we report the findings we obtained at evaluating three dis-
tinct machine learning methods to identify developers’ technical roles. This
investigation is divided into seven sections. In Section 5.1, we argue the importance of
investigating this topic and present the research questions leveraged to perform such
work. Section 5.2 documents the data and methods used in the study, including the
ground truth creation, the features extracted from GitHub, and the machine learning
setup. Section 5.3 presents the results for the first three research questions. Section 5.4
describes the exploratory study conducted on full-stack developers. In Section 5.5.3, we
manually analyze some developers classified by our method to qualitatively interpret
the classification results. In Section 5.5, we discuss the implications to both practi-
tioners and software engineering community. Section 5.6 discusses threats to validity.
Finally, Section 5.7 concludes this chapter.

5.1 Introduction

Software systems are complex engineering artifacts, which demand high levels of tech-
nical specialization in different areas [Brooks Jr, 1995]. These conditions make IT
companies focus on creating cross-functional teams with experts in several positions,
such as databases, security, frontend design, backend design, mobile apps, etc.

Previous works have proposed solutions to use the data of Social Coding Plat-
forms to discover some skills of these experts. They mainly focus on identifying which
technologies do software developers most work on, such as libraries, frameworks, and
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languages [Singer et al., 2013; Teyton et al., 2013; Venkataramani et al., 2013; Teyton
et al., 2014; Huang et al., 2016; Constantinou and Kapitsaki, 2016; Wang et al., 2017;
Wan et al., 2018]. A few others have dedicated to discerning developers’ soft skills, in-
cluding communication, teamwork, responsibility, etc [Singer et al., 2013; Sarma et al.,
2016; Ahmed, 2018]. Lastly, some studies aimed at identifying the roles of developers
in open source projects, like bug fixer, bug triager, core developer, and tester [Ye and
Kishida, 2003; Robles et al., 2009; Bhattacharya et al., 2014; Da Silva et al., 2015; Hon-
sel et al., 2016; Agrawal et al., 2016; Joblin et al., 2017; Constantinou and Kapitsaki,
2017].

As observed in Chapter 3, IT companies organize their development teams ac-
cordingly to the technology the developers master, e.g., frontend, backend, mobile, and
others. For instance, frontend developers are specialized on the application’s interface,
as opposed to backend who are responsible for core features. In this context, we cur-
rently lack approaches for inferring developers’ technical roles. Therefore, our key goal
in this chapter is to identify the technical roles played by developers using information
available in open source platforms.

Does the Identification of Technical Roles Matter?

We define technical roles as the ones derived from expertise in particular program-
ming technologies (e.g., programming languages) and/or architectural components
(e.g., frontend frameworks). In this sense, distinguishing candidates’ technical roles
are important as they represent a good proxy for the technologies and techniques each
one master. For instance, data scientists might have a deeper understanding of data
analyzing techniques. By contrast, frontend developers should master Web APIs con-
cepts, such as RESTFul APIs, AJAX, etc. In fact, source code hosting platforms—e.g.,
GitHub—are currently looking for alternatives to make their users profile richer by bet-
ter expressing their skills, accomplishments, and interests.1

Indeed, technical roles are one of the first aspects considered by recruiters when
hiring developers for a specific position. To provide evidence of this claim, we inspected
the jobs listed by Stack Overflow Jobs2—the part of the Q&A forum where companies
post job offers—on October 25, 2018. Our key finding can be summarized as follows:

3,234 out of 5,027 Stack Overflow job posts (64%) include in their description at
least one of the technical roles investigated in this study.

1https://twitter.com/natfriedman/status/1133700043695886336
2https://stackoverflow.com/jobs

https://twitter.com/natfriedman/status/1133700043695886336
https://stackoverflow.com/jobs
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Additionally, we conducted a preliminary survey to better understand how
GitHub is used when hiring software developers. For this, we contacted all Stack
Overflow users self-described as technical recruiters who were active in the platform
since 2018, and that publicly provided their e-mail for contact. We emailed these users
with a brief survey where we asked:

Do you often use GitHub in your hiring process? If you do, please select
the options that best describe your usage (you can mark multiple options).

We provided four distinct options for the second question, which were formulated
after consulting the literature about software expertise [Marlow and Dabbish, 2013;
Sarma et al., 2016; Baltes and Diehl, 2018]. To avoid possible bias introduced by the
order of the options, we configured our survey system to present them in random order
for each contact. In total, we contacted 30 recruiters and received 7 answers (23%
response rate). Six developers confirmed they use GitHub for hiring purposes. The
survey results are summarized in Figure 5.1.

Other, e.g., to contact developers

I often use GitHub to discern the quality of the code produced by developers
  (e.g., presence and quality of tests, usage of design patterns, and related practices)

I often use GitHub to discern developers behavior in open source projects
  (e.g., communication and teamwork skills)

I often use GitHub to discern the technologies developers work on
  (e.g., libraries, frameworks, languages, etc)

I often use GitHub to discern the technical roles of developers
  (e.g., backend, frontend, mobile, full−stack, etc)

0 1 2 3 4 5
Participants

If you do, please select the options that best describe your usage

Figure 5.1: Survey responses from the recruiters that use GitHub in their hiring process.

Considering our intention in this chapter, the main finding of this survey can be
summarized as follows:

Five out of six technical recruiters use GitHub to discern the technical roles of the
candidates, which is exactly our central goal in this investigation.

Although not directly linked with our goals here, another frequent usage of
GitHub includes identifying which technologies do developers work on (also with 5
answers) and discerning developers’ behavior in open source projects (2 answers).
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Finally, we opted for focusing this work specifically on GitHub due to its impor-
tance in relation to other OSS platforms. Indeed, GitHub contains a larger userbase
when compared to its peers; the platform has registered a total of 56M users in 2020,
four times larger than Stack Overflow (14M). Furthermore, GitHub provides more di-
verse and detailed data sources to map developers’ profiles, such as commits messages,
source code lines added/removed, issue trackers messages, repositories metadata, etc.

Proposed Study

In this study, we investigate a method centered on supervised machine-learning tech-
niques to identify developers’ technical roles by considering their contributions to public
GitHub projects. More specifically, we infer developers’ technical roles by using fea-
tures extracted from their public GitHub profiles (e.g., programming languages, short
bio, etc) and their GitHub projects. We first build a ground truth with the techni-
cal roles of 2,284 GitHub developers. Then, we executed the proposed technique to
identify developers in six popular technical roles:3 backend, frontend, full-stack, mobile,
devops, and data science. Lastly, we evaluated our method by answering four research
questions.

RQ.1 How accurate are machine learning classifiers on identifying develop-
ers’ technical roles? Our best model scored meaningful results for precision
(0.75) and AUC (0.70), while it reported lower ones for recall and F1 (0.49 and
0.59, respectively). When considered independently, our models provide the best
results for data science and frontend roles (0.86 and 0.77; precision). By contrast,
we observed lower results for backend (0.62; precision).

RQ.2 What are the most relevant features to distinguish technical roles?
Features associated with programming languages are relevant for all roles. Indi-
vidually, data science’s top-10 most relevant features have the largest represen-
tativeness rate: 33.2%. By contrast, backend top-10 features scores only 6.8% of
the total.

RQ.3 Do technical roles influence each other during classification? In this
RQ, we investigate the gains achieved with the use of Classifiers Chains in our
problem. Suppose that a developer is predicted as having a role R1. After making
this prediction, R1 is used as input to the classifiers of R2, R3, R4, and R5 roles
(assuming we analyze five roles, as in our first three RQs). Specifically, we check

3Accordingly to https://insights.stackoverflow.com/survey/2018

https://insights.stackoverflow.com/survey/2018
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the improvements achieved with Classifier Chains by setting up and training
120 different classification models (i.e., covering all possible permutations of five
roles). Overall, such models present minor improvements in recall (+0.05) at the
cost of precision scores (−0.05) when compared to the ones in RQ.1.

RQ.4 How effectively can we identify full-stack developers? Differently from
the technical roles analyzed in the first three RQs, the full-stack role is derived
from the combined expertise in backend and frontend technologies. Therefore,
we conducted a separated study to identify full-stack developers and verify how
they impact the classification of backend and frontend developers. The proposed
classifier performed very well when identifying FullStack, achieving 0.99 for
precision and 0.71 for recall. Moreover, the addition of FullStack developers
significantly improved the identification of both Backend and Frontend—0.87
and 0.86 for precision, respectively—after specific adjustments.

Our Contributions

We show that—based on high-level features retrieved from developers’ public profiles
and projects in GitHub—it is possible to infer major technical roles commonly used
in industry to recognize software developers. Secondly, we make publicly available
our ground truth with the roles of 2,284 GitHub developers. This ground truth can
motivate and support further research in the area.

5.2 Study Design

5.2.1 Technical Roles

The focus of this work is to propose a method to unveil the technical roles of GitHub
developers. We used the Annual Developer Survey conducted by Stack Overflow in
2018 to select the roles considered in our study. More than 100,000 developers from 183
countries answered this 30-minute survey where, among other questions, they answered
which technical roles they associate with the tasks they normally perform. In this work,
we study the top-4 most popular roles, according to this survey: Backend (58%),
FullStack (48%), Frontend (38%), and Mobile (20%). Moreover, we included
DevOps (10.4%) and DataScience (7.7%) roles in our analysis as both are also
frequently featured in the top trending IT positions. Specifically, we first focus on five
roles: Backend, Frontend, DevOps, DataScience and Mobile (RQ.1, RQ.2,
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and RQ.3 ). Due to its particularity, we investigate the FullStack role separately
(RQ.4 ).

5.2.2 Ground Truth

As the proposed machine learning model relies on features extracted from GitHub to
classify developers’ technical roles, we fully avoided using GitHub’s data to generate
our ground truth. Instead, we relied exclusively on Stack Overflow’s data to build this
ground truth, since this data would not be used further in our study. Other works use
data from Stack Overflow as a reliable source to assess developers’ expertise [Venkatara-
mani et al., 2013; Saxena and Pedanekar, 2017; Ahmed, 2018]. On the other hand, after
building the ground truth, our goal is to identify the technical roles of GitHub users,
i.e., by only considering GitHub data. We followed a three-step process to build the
ground truth, as follows.

Stack Overflow Data Gathering

We used Stack Exchange Data Explorer (SEDE)4 to collect Stack Overflow users with
GitHub profiles. SEDE is a publicly available tool that allows querying data available
in the Stack Exchange platform, using a web interface. On June 2nd, 2020, we queried
SEDE for Stack Overflow users who have a link to GitHub. This query returned 27,051
developers. We then extracted—through regular expressions—the GitHub username
from the provided links, and used GitHub GraphQL API5 to retrieve GitHub data (as
described in Section 5.2.3) for developers with valid usernames. During this procedure,
we discarded developers with URLs pointing to invalid GitHub usernames. We ended
up with a dataset composed of 24,889 developers.

Labeling

In this step, we analyzed the profile information provided by Stack Overflow to la-
bel developers’ roles. Figure 5.2 depicts an example of Stack Overflow’s user profile.
Among the information available in his profile, this developer described himself as a
“Lead Front End Developer”. This information is endorsed by his top tags, e.g., angu-
larjs, javascript, jquery, etc. Therefore, we relied on the description text of developers
in Stack Overflow to determine their roles.

More specifically, we elaborated five distinct regular expressions to identify each
role, as described in Table 5.1. These regular expressions were configured to consider

4https://data.stackexchange.com/
5https://developer.github.com/v4/

https://data.stackexchange.com/
https://developer.github.com/v4/
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Figure 5.2: Example of Stack Overflow developer profile. The data used in the ground
truth creation is highlighted.

Table 5.1: Regular expressions used to identify technical roles.

Role Regular Expression Examples

Backend /\bback.{0,1}end\b/i Back end, backend
Frontend /\bfront.{0,1}end\b/i Frontend, front-end
DevOps /\bdev.{0,1}ops\b/i DevOps, dev-ops
DataScience /\bdata.{0,1}scientist\b/i Data Scientist, data scientist
Mobile /\bmobile\b/i mobile, Mobile

spaces, e.g., Back-end, Front end) and to ignore case (e.g., Mobile and mobile. Consid-
ering the profile in Figure 5.2, our labeling process classify him as Frontend (“Lead
Front End Developer” and “Front end developer.”).

Selected Developers

By following the aforementioned steps, 1,802 developers were labeled with at least
one technical role. We discarded 140 (7.7%) developers with less than five GitHub
public repositories. The reason is that our models depend on developers being active
on GitHub to infer their roles. Lastly, 1,662 developers were included in our ground
truth, containing 2,022 role assignments.

Frontend is the role with more developers (820), followed by Mobile (453)
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Table 5.2: Distribution of developers among the analyzed roles.

# Roles Role # Devs.Backend Frontend Mobile DevOps DataScience

One

X 178
X 545

X 352
X 119

X 146

Two

X X 198
X X 29
X X 9
X X 1

X X 39
X X 4

X X 5
X X 1

X X 1

Three

X X X 23
X X X 7
X X X 1
X X X 1

Four X X X X 3

and Backend (450). Table 5.2 shows how these labels are distributed. As we can
observe, 1,340 developers (80%) are associated with just one role. Most of them are
Frontend (545; 33%), or Mobile (352; 21%). Considering the 287 developers who
have two or more roles, the majority are both Backend and Frontend (198; 69%).
By contrast, DataScience is the one with the smallest intersection with other roles,
i.e., one developer in all situations. 32 developers were labeled in three roles, most of
them in Backend, Frontend, and Mobile (23; 72%). Only three developers were
assigned in four roles. Finally, we found no developers who self-labeled themselves in
all five roles.

5.2.3 Data Collection

After using Stack Overflow’s data to leverage our ground truth, we collected GitHub’s
data for each developer in this golden set. This data will be later transformed into a list
of features to feed our prediction models (see Section 5.2.4). To provide a code agnostic
solution (and therefore analyze repositories in multiple programming languages), we
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Figure 5.3: A developer profile from GitHub. Appart from Projects’ Dependencies,
the extracted data is highlighted according to each category: Programming Languages
in blue, Short Bio in green, Projects’ Names in purple, Projects’ Topics in grey, and
Projects’ Descriptions in orange.

collected mostly textual data about the developers’ profiles and the projects they own.6

Figure 5.3 illustrates the data we collected for a given profile. The data we collected
fits into six distinct categories:

Programming Language: Previous works report that programming languages are
a reliable proxy to assess developers’ expertise area [Marlow and Dabbish, 2013;
Marlow et al., 2013; Sarma et al., 2016; Ford et al., 2017; Baltes and Diehl, 2018].
For each developer, we first retrieved her list of projects, and then extracted both
commits and the main programming language of each one. Next, we derived the
commits information into three dimensions: (a) the total number of commits;
(b) the number of commits performed by the developer (i.e., she is the author);
and (c) the rate between both of them. Lastly, we grouped the projects accord-

6It is important to note that we have discarded forked projects in our analysis.
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ingly to the programming language collected earlier and averaged the resulting
values. We ended up with the following features for each developer, in each lan-
guage: Language (total), Language (author), and Language (rate). This group is
highlighted in blue in Figure 5.3.

Short Bio: Short description of the developers’ main activities, manually provided by
each one. We decided to include this category in our analysis as some developers
use this information to describe their field of activity, e.g., “I develop iOS/Android
apps with Swift/Kotlin language”. We highlighted this group in green in Figure
5.3.

Projects’ Names: These names may contain keywords referencing specific technolo-
gies used in the projects, e.g., android-data-binding-1, docker-example, etc. As ob-
served in previous works, these technologies are also indicators of expertise [Tey-
ton et al., 2014; Greene and Fischer, 2016; Saxena and Pedanekar, 2017; Mon-
tandon et al., 2019]. Therefore, for each developer, we collected the name of her
GitHub projects and merged them into a single data point. This group is colored
in purple in Figure 5.3.

Projects’ Topics: For the same reason as above, topics are generally used by GitHub
developers to declare technologies and tools used by their projects, e.g., ionic,
gulp, and webpack. We also collected the GitHub topics of the developers’ projects
and merged them into a single data point as well. This group is highlighted in
grey in Figure 5.3.

Projects’ Descriptions: This information can also provide clues about the technolo-
gies used by GitHub projects [Hauff and Gousios, 2015]. For instance, the descrip-
tion “a React.js contact manager” indicates that ReactJS is used in the project.
For this reason, we collected the short description of each developer’s project and
merged them into a single data point. This group is highlighted in orange in
Figure 5.3.

Projects’ Dependencies: We decided to include the list of dependencies since third-
party libraries are largely used in modern software systems [Teyton et al., 2013;
Hauff and Gousios, 2015; Huang et al., 2016; Montandon et al., 2019]. For each
project, we extracted its list of dependencies using a GitHub GraphQL endpoint.7

Next, we assembled these features by summing up the number of times each
dependency was referenced in each developer’s projects. We initially collected

7https://developer.github.com/v4/object/dependencygraphmanifest/

https://developer.github.com/v4/object/dependencygraphmanifest/
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data on 17,556 dependencies, but we restricted ourselves to the top-1,000 most
used ones as they are present in 81% of all analyzed projects.

5.2.4 Selected Features

To transform the data described in Section 5.2.3 into a list of features, which can be
used as input for a machine learning algorithm, we applied the following transformation
steps:

Correlation Analysis

Initially, we ended up with 477 and 1,000 features for Programming Languages and
Projects’ Dependencies categories, respectively. Due to this high number, we followed
a correlation analysis procedure to remove the ones with high correlations in each
category. For this, we used corr function from pandas8 Python library to generate a
Spearman correlation matrix. Then, we identified pairs of features with a correlation
greater than 0.7, as previously adopted in the literature [Bao et al., 2017]. In such
cases, we discarded the feature that has the highest correlation rate when compared
to the other ones. In total, we discarded 260 features for Programming Languages.
Generally these correlations happened with features belonged to the same language,
but covering different domains, e.g., C (author) and C (rate), CSS (author) and CSS
(rate), etc. In most cases, we maintain the rate-based ones since they usually have the
lowest correlation rate with the others. As for Projects’ Dependencies, we discarded
202. Differently, the discarded dependencies are more diverse, including specific (ionic-
native-statusbar, a specific plugin for ionic framework) and general (unicorn, an http
webserver) purpose libraries.

Bag-of-Words

Machine learning algorithms do not deal with text directly. For this reason, we used a
bag-of-words to transform each textual category into a list of features. Bag-of-words
is a simple and efficient technique to extract features from text [Goldberg, 2017]. In
summary, each word is mapped to a feature that describes its frequency in a document.
As in other studies [Shirabad et al., 2003; Kim et al., 2008; Beyer et al., 2018], we
performed the following steps to apply this technique on Short Bio, Projects’ Names,
Projects’ Topics, and Projects’ Descriptions. First, we manually stripped out HTML
tags, punctuation, and numbers through regular expressions. Then, we removed

8https://pandas.pydata.org/

https://pandas.pydata.org/
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stop words (e.g., of, him, the, and, etc.) using the default English list provided by
sklearn.text module. Finally, we used TfidfVectorizer 9 class from sklearn library to
apply bag-of-words using the TF-IDF outcome as feature values. Following common
guidelines for text processing [Foster Provost, 2015], we considered only words in a
certain document frequency range: [0.04, 0.15] for Projects’ Descriptions, [0.03, 0.25]
for Projects’ Names, [0.01, 0.25] for Projects’ Topics, and [0.01, 0.20] for Short Bio.
These limits were defined after executing Random Forest classifier with 100 different
bag-of-words configurations by randomly selecting different document frequency values
in each configuration. We selected the configuration which presents improvements in
most evaluated metrics. The result of each configuration is available in our replication
package for further reference.

Number of Selected Features: After these steps (i.e., Correlation Analysis and

Bag-of-Words), we ended up with 1,471 features, including 798 from Projects’ Depen-
dencies category, 217 from Programming Languages, 169 from Projects’ Descriptions,
155 from Projects’ Names, 69 for Short Bio, and 63 from Projects’ Topics.

5.2.5 Machine Learning Setup

Multi-label Problem

Usually, classification problems rely on a single-label, i.e., each instance is associated
with a single label. On the other hand, a multi-label classification problem can associate
more than one label to each instance [Tsoumakas et al., 2011; Beyer et al., 2018].
Particularly, our dataset is a five-label classification problem since there are five distinct
roles each developer can be an expert on. Table 5.3 illustrates this dataset. In this
example, developer D1 is associated with Backend and Frontend roles. Likewise,
developer D2 is tied with Backend and DevOps. On the other hand, D3 is associated
just with DataScience.

Problem Transformation

We can approach a multi-label classification problem in different ways. For instance,
we can transform a multi-label dataset into a single-label one [Read et al., 2011;
Luaces et al., 2012]. Alternatively, some algorithms work directly with multi-label

9http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.TfidfVectorizer
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Table 5.3: Dataset with five target labels.

Developer Backend Frontend Mobile DevOps DataScience

D1 · · · 1 1 0 0 0
D2 · · · 1 0 0 1 0
D3 · · · 0 0 0 0 1
...

...
...

...
...

...
Dn · · · 0 0 1 0 1

datasets [Tsoumakas et al., 2011]. For this investigation, we use two common transfor-
mation techniques for dealing with multi-label datasets:

Binary Relevance (BR): This technique splits the original dataset into multiple
binary classification problems, i.e., one binary classification problem for each la-
bel [Tsoumakas et al., 2010; Luaces et al., 2012]. Then, such models are fitted
independently. The results can be shown either independently (one result for each
model) or aggregated (weighted average of all models). In this study, we calcu-
lated the aggregated results using a micro-average strategy, as it is recommended
for multilabel problems.10

Classifier Chains (CC): This technique links the binary classifiers along a chain in
a way that each classifier uses results from earlier ones in its predictions [Read
et al., 2011]. The goal is to take advantage of eventual dependencies that might
exist among target labels. Figure 5.4 illustrates a classification scenario using
CC considering five technical roles: Mobile, Frontend, Backend, DevOps,
and DataScience. Each model includes previous predictions as features and
propagates its results along the chain. Figure 5.4a presents the first model in the
chain (Model I). As we can see, this model makes its predictions using only the
available features. Model II (Figure 5.4b) predicts its values using all features
plus Model I predicted labels. The process is propagated to Model III, using all
features plus both Models I and II predicted labels (Figure 5.4c). As shown in
Figure 5.4d, the results of Models I, II, and III are forwarded to Model IV along
with the already available features. Finally, this propagation ends up at Model
V, which receives the predictions from all previous models plus the initial features
as input (Figure 5.4e). In this way, CC tackles the label independence problem
faced by BR [Madjarov et al., 2012; Zhang and Zhou, 2014].

10https://scikit-learn.org/stable/modules/model_evaluation.html#from-binary-to-
multiclass-and-multilabel

https://scikit-learn.org/stable/modules/model_evaluation.html#from-binary-to-multiclass-and-multilabel
https://scikit-learn.org/stable/modules/model_evaluation.html#from-binary-to-multiclass-and-multilabel
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(c) Model III: using both Models I and II
predictions (Mobile and Frontend) as features

(a) Model I: no additional
information

(b) Model II: using Model I predictions
(Mobile) as features

(d) Model IV: using predictions from Models I, II, and III
(Mobile, Frontend, and Backend) as features

(e) Model V: Using predictions from all previous models as features

Figure 5.4: Multi-label classification using Classifier Chains.

Machine Learning Classifier

We initially decided to use Random Forest [Breiman, 2001] and Naive Bayes [Maron,
1961] classifiers to train and test our models for identifying the technical roles of GitHub
users. We selected Random Forest due to its robustness to noise and outliers [Tian
et al., 2015]. Moreover, Random Forest was successfully used in many application
areas, including software engineering problems [Menzies et al., 2013; Peters et al.,
2013; Provost and Fawcett, 2001; Coelho et al., 2018; Bao et al., 2017; Beyer et al.,
2018]. As we are dealing mostly with textual information, we also decided to include
Naive Bayes in our study as this classifier generally presents good results in textual
scenarios, such as spam filtering [Metsis et al., 2006] and news classification [McCallum
and Nigam, 1998]. We used the implementation provided by scikit-learn [Pedregosa
et al., 2011] for both classifiers along with 10-fold cross-validation to select the best



5.3. Results 77

model. Basically, cross-validation splits the data into k folds (in our case, k = 10),
where k − 1 folds are used to fit the model and the remaining one is used to test the
predictions.

Evaluation Metrics

We use six metrics to evaluate the quality of the model’s predictions: precision, recall,
F1-score, AUC (Area Under the Curve), Jaccard Coefficient, and Hamming Loss. Pre-
cision measures the correctness, while recall measures the completeness of the model
predictions. F1-score is the harmonic mean of precision and recall. AUC represents the
area under the Precision-Recall (PR) curve. Unlike ROC, PR curves are more recom-
mended for assessing unbalanced datasets [Foster Provost, 2015]. Jaccard Coefficient—
also known as multi-label accuracy [Boutell et al., 2004]—is the division of the number
of correctly predicted labels by all true labels. Hamming Loss is the ratio of wrong
labels by the number of labels [Dembczyński et al., 2012]. As it is a loss measure,
the lower the value, the better the model. Finally, we compared all metrics against
a Stratified baseline. This baseline considers the dataset distribution to perform its
predictions. For instance, in a dataset where 10% of the samples are positive labels,
this baseline limits its positive predictions to 10% as well.

5.3 Results

(RQ.1) How accurate are machine learning classifiers in

identifying technical roles?

Table 5.4: Binary Relevance overall results.

Metric Stratified Random Naive
Baseline Forest Bayes

Precision 0.33 0.77 0.51
Recall 0.32 0.49 0.62
F1 0.33 0.59 0.56
AUC 0.41 0.71 0.59
Jaccard Coeff. 0.20 0.42 0.39
Hamm. Loss 0.32 0.16 0.24

Table 5.4 presents the general results for the first three roles using Binary Rel-
evance (BR). The Random Forest classifier presented the best results overall, scoring
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0.77 for precision and 0.71 for AUC. Moreover, apart from recall, Random Forest out-
performed Naive Bayes for all evaluated metrics. Finally, both classifiers performed
significantly better than the Stratified Baseline. The baseline results are, for example,
only 0.33 for precision.

Table 5.5 presents the classification results for each role, separately. Overall,
Random Forest presented better results for precision when compared to Naive Bayes,
and both outperformed the Stratified Baseline. Regarding Random Forest, the classifier
presented high precision rates—i.e., above 0.7—for 4 out of 5 roles: DataScience

(0.86), Mobile (0.78), Frontend (0.77) and DevOps (0.70). On the other hand,
only Frontend achieved results as good as for recall (0.78) and F1 (0.77). Further,
the classifier scored poor results especially for Backend role (recall and F1 equal to
0.12 and 0.18, respectively).

Table 5.5: Binary Relevance results for each role.

Role Precision Recall F1

Stratified Baseline
Backend 0.28 0.28 0.28
Frontend 0.48 0.46 0.47
Mobile 0.28 0.28 0.28
DevOps 0.08 0.06 0.07
DataScience 0.09 0.09 0.09

Random Forest
Backend 0.62 0.12 0.18
Frontend 0.77 0.78 0.77
Mobile 0.78 0.38 0.51
DevOps 0.70 0.13 0.20
DataScience 0.86 0.66 0.74

Naive Bayes
Backend 0.33 0.40 0.36
Frontend 0.69 0.82 0.75
Mobile 0.51 0.46 0.47
DevOps 0.24 0.47 0.32
DataScience 0.45 0.85 0.58

When it comes to Naive Bayes, we did not identify any score above 0.7 for pre-
cision; Frontend has the highest one (0.69), followed by Mobile (0.51) and Data-

Science (0.45). In fact, we observed such good results in three scenarios only: Fron-

tend and DataScience for recall (0.82 and 0.85, respectively), and Frontend for
F1 (0.75). Even though, Naive Bayes was superior to the baseline in all scenarios.
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Random Forest presented the best results overall (e.g., 0.77, precision; 0.71, AUC),
outperforming both Naive Bayes and the baseline. When analyzed individually,
DataScience and Frontend scored the best results for most metrics (e.g., 0.86
and 0.77; precision), while Backend showed the worse ones (e.g., 0.62; precision).

(RQ.2) What are the most relevant features to distinguish

technical roles?

Figure 5.5 shows the top-10 most relevant features by technical role. To identify these
features, we executed the Random Forest classifier for each role independently, using
the same parameters as in RQ.1. We then selected the top-10 features with the highest
value from the feature relevance ranking provided by each model. In Figure 5.5, the col-
ors and shapes identify the category of each feature (programming languages, projects’
names, projects’ descriptions, projects’ topics, projects’ dependencies, or short bio).
Furthermore, we annotate the category associated with each feature in its description.
Finally, we normalized the ranking with respect to the feature with the highest value.

Features associated with programming languages are largely predominant for all
five roles, representing 38 out of 50 features: 7 for DataScience, DevOps, and
Mobile; 8 for Frontend, and 9 for Backend. From these, 19 (50%) are rate-based,
13 (34%) consider the total number of commits, and 6 (16%) include only the commits
performed by the author. In other words, 66% of the relevant programming languages
features do take into account actual developers’ contributions.

Next, short bio appears as the second most frequent with 6 occurrences, followed
by projects’ descriptions and projects’ names (3 and 2 occurrences, respectively). Nev-
ertheless, short bio shows up as the most important feature in three roles. Most of
these features directly describes the role that is analyzed: scientist for DataScience,
devops for DevOps, mobile for Mobile, and backend for Backend. Surprisingly,
projects’ topics and projects’ dependencies are not present in any ranking position.

When we analyze the results for each role, we see that DataScience has the
highest relevant features. Six features stand out with more than 3% of relevance rate:
scientist (Bio) (6.5%), Jupyter Notebook (total) (5.4%), Jupyter Notebook (rate) (5.1%),
data (Bio) (5.0%), R (total) (4.4%), and R (rate) (3.5%). Although these values may
sound low, our model includes 1,662 features. Also, these features are rather specific
to the DataScience field; from them, only Jupyter Notebook (total) is also present in
other roles (Frontend).
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Figure 5.5: Most relevant features for each technical role. Colors and shapes repre-
sent each feature category: developers bio ((Bio), green circle), projects’ descriptions
((desc.), blue square), projects’ names ((name), pink diamond), and programming
languages ((rate, author, and total), orange triangle)
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For Mobile, mobile (Bio) stands out with 3.0% of relevance rate, followed by
Swift (rate) (2.0%) and Java (rate) (1.6%). More specifically, three out of 10 features
are directly associated to the iOS development platform (Swift (rate), Swift (author),
and ios (desc.)). Likewise, other three features are linked to the Android platform:
Java (rate), android (name), and Java (total). The features related to iOS and Android
development represent 4.5% and 4.3% of the top-10 listed features, respectively.

Regarding DevOps, we observe that devops (Bio) plays a prominent position in
the ranking, with 4.4%. The next ones are Shell (rate) (1.9%), docker (name) (1.7%),
and docker (desc.) (1.6%). Frontend ranking presents a similar distribution, where
JavaScript (author) is the prominent feature with 3.6%, whereas the next five are
valued between 1.8% (Python (rate)) and 1.6% (CSS (rate)).

Finally, we observe that no feature stands out in Backend ranking. The most
relevant feature is PHP (rate), with 1.1%, while Python (rate) is the 10th feature in the
ranking, with 0.8%. Even though, 5 out of the top-10 features are linked with backend
development: PHP (rate), Java (total), Ruby (rate), backend (Bio), and Python (rate).

Features related to programming languages are predominant for all five roles. In
DataScience role, six features stand out: scientist (Bio), Jupyter Notebook (to-
tal), Jupyter Notebook (rate), data (Bio), R (total), and R (rate). On the other
hand, fewer features are presented such importance in other roles: devops (Bio) for
DevOps, mobile (Bio) for Mobile, JavaScript (author) for Frontend. Lastly,
no feature stands out from the others for Backend.

(RQ.3) Do technical roles influence each other during

classification?

As explained in Section 5.2.5, Classifier Chains (CC ) is a technique to deal with multi-
label classification problems. When using this technique, Binary Classifiers are ordered
in such a way that each model uses previous predictions as input. The rationale is that,
given two labels A and B, if A influences B then we might want to use A to improve
B’s predictions.

Particularly, we executed the CC technique with Random Forest for all possible
role combinations. In total, the classifier was executed for 5! combinations, i.e., 120
different combinations. Figure 5.6 presents the results in six different graphics, one for
each metric considered in this study. For comparison reasons, the results are reported
in relation to RQ.1, which is used as a baseline in this RQ and it is represented by a



82 Chapter 5. Mining the Technical Roles of GitHub Users

dashed line in the figure. The horizontal axis represents each CC configuration and the
vertical axis the number of points each metric has above or below the baseline. This
means that the CC technique performed better than the baseline when its results are
above the dashed line, or worse otherwise.
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Figure 5.6: Overall results using Classifier Chain, reported in relation to the RQ.1
baseline (i.e., dashed line).

Overall, all models show a minor increase of recall up to almost +0.05 (configu-
rations 72, 89, and 96), at a cost of lower precision (−0.05; configurations 47, 80, 93,
and 113). We also observe minor improvements for both F1 and Jaccard Coefficient
(+0.02, configurations 60, 72, and 96; both), while AUC presented a minimal decrease
(−0.01, configurations 80 and 83). By contrast, we did not find any relevant change
to the Hamming Loss score. Interestingly, the highest improvements for recall, F1,
and Jaccard—and also some of the minor setbacks for precision—happened between
configurations 49 and 60, when Mobile is classified first, followed by Backend or
Frontend.

The results reveal that including technical roles predictions to the classifying pro-
cess does not bring significant improvements. Overall, we obtained minor improve-
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ments for recall, Jaccard, and F1 on the cost of precision. These results are more
consistent when Mobile is classified first, followed by Backend or Frontend.

5.4 Understanding the FullStack Role

Differently from the previously analyzed roles, FullStack developers are defined by
their ability to work through the whole application stack. In fact, the industry sees a
FullStack developer as someone who can perform both Frontend and Backend

tasks. The following quote, retrieved from a popular Medium post,11 illustrates this
point:

Being a Full-Stack developer [. . . ] means that you are able to work on both
sides and understand what is going on when building an application.

Due to this particularity, we decided to investigate the FullStack role in a spe-
cific section. First, we extended the ground truth described in Section 5.2.2 to include
developers self-identified as FullStack on Stack Overflow.12 The new ground truth
is composed by 2,284 developers; 853 of them are FullStack. From these, 783 were
not labeled either as Backend or Frontend, which contradicts the FullStack’s
definition. To fix this inconsistency, we adapted the labeling process to consider every
FullStack developer as an expert in both Backend and Frontend roles.

After applying the same process described in Sections 5.2.3 and 5.2.4, this ex-
tended dataset ends up with 1,567 features: 819 from Projects’ Dependencies category,
219 from Programming Languages, 212 from Projects’ Descriptions, 146 from Projects’
Topics, 101 from Projects’ Names, and 70 from Short Bio.

(RQ.4) How effectively can we identify full-stack developers?

Table 5.6 presents the classification results for Random Forest using the Binary Rel-
evance approach (RQ.1 ) and including FullStack. Besides, we included the results
for each of the five previous roles, along with the difference for the one described in
RQ.1.

Overall, all metrics reported significantly better results after including Full-

Stack developers in the ground truth. Precision, recall and F1 increase to 0.88

11https://medium.com/coderbyte/a-guide-to-becoming-a-full-stack-developer-in-
2017-5c3c08a1600c, Accessed at 2019-04-04.

12We used the following regex to label developers as FullStack: /\bfull.{0,1}stack\b/i.
13Overall value is calculated using the same strategy as described in Section 5.2.5.

https://medium.com/coderbyte/a-guide-to-becoming-a-full-stack-developer-in-2017-5c3c08a1600c
https://medium.com/coderbyte/a-guide-to-becoming-a-full-stack-developer-in-2017-5c3c08a1600c
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Table 5.6: Binary Relevance results after including FullStack, Random Forest only.

Role Precision Recall F1

FullStack 0.99 0.71 0.83
Backend 0.87 (+0.25) 0.63 (+0.51) 0.73 (+0.55)
Frontend 0.86 (+0.09) 0.89 (+0.11) 0.87 (+0.10)
Mobile 0.80 (+0.03) 0.34 (−0.04) 0.47 (−0.04)
DevOps 0.75 (+0.05) 0.06 (−0.07) 0.11 (−0.09)
DataScience 0.86 (+0.00) 0.62 (−0.04) 0.71 (−0.03)
Overall13 0.88 (+0.11) 0.69 (+0.20) 0.77 (+0.18)

(+0.11), 0.69 (+0.20), and 0.77 (+0.18), respectively. Likewise the new AUC, Jaccard
Coefficient, and Hamming Loss reach 0.89 (+0.18), 0.69 (+0.10), and 0.13 (−0.03),
respectively.

Considering each role, we observe that FullStack presented very high results:
its precision is 0.99, recall is 0.71, and F1 is 0.83. When it comes to the other roles, we
noticed an interesting improvement for both Frontend and Backend. Frontend’s
value for F1 increased from 0.77 to 0.87 (+0.10), mainly due to recall improvement
(from 0.78 to 0.89; +0.11). Most important, Backend gained 55 points in F1 when
compared to the one in RQ.1 (from 0.18 to 0.73). Recall is also largely responsible for
this difference as it scored 0.63 against 0.12 before; an increase of 51 points. By contrast,
we observe a minor negative impact in F1 for Mobile (−0.04), DevOps (−0.09), and
DataScience (−0.03). Even so, the precision score for these roles has either increased
(Mobile, +0.03; DevOps, +0.05) or stayed the same (DataScience).

We accredit this side effect as a consequence of expanding the dataset with the
new FullStack developers. Particularly, in our second dataset, we found several
FullStack developers with missing Backend or Frontend labels (more precisely,
783 developers, as we mentioned before). In other words, once they are FullStack,
for these developers it is implicit that they should be also viewed as Backend or
Frontend. Consequently, after labeling FullStack developers as Backend and
Frontend we provided new information to the classifiers, which allowed them to
improve their predictions.

The proposed classifier performed very well when identifying FullStack devel-
opers (precision = 0.99). Moreover, FullStack developers have an interesting
collateral effect, since they contributed to improving results of both Backend

(+25%) and Frontend (+9%).
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5.5 Discussion

In this section, we start discussing the implications of our work to both academia
and practitioners (Section 5.5.1). Then, we argue about how the results for precision
and recall should be interpreted in the context of this study (Section 5.5.2). Lastly,
we analyze the performance of our method by inspecting developers profiles in three
different scenarios (Section 5.5.3).

5.5.1 Implications

We shed light on the importance of unveiling technical roles; an expertise topic not yet
extensively investigated by the software engineering community. More specifically, we
performed two preliminary studies to demonstrate the importance of this topic. First,
we inspected posts from the Stack Overflow Jobs platform and find out that 64% of
5,027 offers are for one of the six technical roles studied in this study. Second, we
surveyed technical recruiters to understand which characteristics do they look for in
GitHub profiles. Five out of six recruiters indicated they search for clues to discern the
technical roles of the candidates.

Besides, the proposed machine learning method has most of its usage in hiring
processes. In this context, when hiring software developers, technical recruiters can
benefit from the technical roles inferred by the proposed models. This usage might
occur in two main ways. First, by proactively identifying developers with the skills
expected by existing job positions in the company. Secondly, by reactively evaluating
the profile of candidates who have already applied to existing job positions, to assure
they have the expected skills. In both cases, the inferred technical roles should be used
as a piece of additional information during the hiring process, which certainly includes
other selection instruments, such as technical interviews, reference letters, etc.

5.5.2 A Note on Precision and Recall

In general, our method showed its effectiveness in revealing the technical roles of soft-
ware developers given their GitHub profiles. For instance, our model scored 0.88 for
precision and 0.89 for AUC when considering all six roles analyzed in this study (see
Table 5.6); by contrast, we achieved a lower result for recall (0.69). When analyzed
individually, we observe that the precision for each role ranges from 0.75 (DevOps) to
0.99 (FullStack). In fact, except for DevOps all other roles achieved at least 80%
of precision. On the other hand, only Frontend reached a similar value for recall
(0.89); the other ones remained between 0.06 (DevOps) and 0.71 (FullStack).
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Essentially, precision answers the following question “What proportion of positive
identifications was actually correct?”, whereas recall seeks to answer “What proportion
of actual positives was identified correctly?”.14 In the context of technical recruiters, we
advocate that precision is more important than recall as they normally need to identify
a small set of candidates for the existing positions; i.e., they do not need to locate all
developers matching their job positions in the GitHub universe. Furthermore, compa-
nies avoid at most a false positive (a bad hiring), as it is more expensive [McDowell,
2015; Behroozi et al., 2019].

5.5.3 Manual Analysis

We manually inspected developers’ profiles to analyze their predictions so we can better
understand the proposed classification results. Specifically, we analyze developers in
three distinct scenarios: correct classifications (True Positive); wrongly classified in a
given role (False Positive); and not classified in a given role, despite being so (False
Negative).

We select three developers and manually analyze their predictions to better un-
derstand the proposed classification results. Specifically, we analyze D844, correctly
classified as Mobile developer (true positive); D1341, wrongly classified as DevOps

(false positive); and D68, who is not classified as Frontend developer, despite being
labeled as one (false negative).

True Positive Scenario

Developers in this group have had their roles correctly predicted by our method. In
this scenario, we inspected developer D844, classified as Mobile Developer. D844 owns
22 public GitHub projects, most of them related to mobile development; four projects
have Swift as their main programming language, and other five have the word Android
in their description. Moreover, another four projects are implemented in Java and
contain experiments about chart animations in Android. In total, 19 out of 22 projects
are directly related to mobile development. In his personal website, D844 describes
himself as “Android & iOS Engineer | App Maker”. Through D844’s GitHub page,
we can also reach his LinkedIn profile and find out he has been working with mobile
development since 2014.

14Questions retrieved from https://developers.google.com/machine-learning/crash-
course/classification/precision-and-recall

https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
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False Positive Scenario

This group contains developers wrongly predicted as experts in any of the analyzed
roles. We inspected the profile of D1341, which is not a DevOps developer, but was
predicted as such. In his LinkedIn profile, D1341 identifies himself as a “Data Engineer”,
also mentioning he works in this position since 2016. D1341 received most endorsements
in Python (19), Data Science, andMachine Learning (18, both). By contrast, D1341 has
few endorsements in DevOps-specific technologies: one for AWS and two for Linux.
He also obtained certifications in “Machine Learning” and “Scalable Microservices with
Kubernetes”. D1341 is very active on GitHub, performing 711 contributions in the
last year. This developer owns 30 projects in 13 different languages, most of them
in Python (five projects). Further, Docker appears in the description of two other
projects described as an assistant tool for data analysis. Therefore, due to his limited
experience with DevOps-based tools and languages, D1341 should not be classified as
a DevOps.

False Negative Scenario

Developers are considered False Negative when they are not classified as experts in a
given role, despite being so. For this scenario, we examined D68, who is a Frontend

developer, but was not identified as such. In his short bio, D68 describes himself as
a “Frontend Engineer”. On GitHub, this developer has performed 1,018 contributions
over the last year, where 51% of them were commits. Even though, D68 is the owner
of only 12 projects; five of them are directly related to frontend technologies (e.g.,
JavaScript, vue.js, etc). The remaining projects are implemented in other languages,
such as Java, PHP, and Python. Moreover, his projects’ descriptions do not mention
the use of Frontend technologies. In fact, five projects do not contain any description
at all. In other words, the programming languages and short bio used by D68 are the
only features directly related to Frontend, but their presence was not enough to label
him correctly.

False negative predictions gather our attention as they directly impact the recall’s
performance. As our classifiers scored lower values for this metric in Mobile and De-

vOps roles, we decided to extend this analysis by inspecting 10 new randomly selected
developers, five in each role. Overall, we observe these developers do not hold specific
information to classify them in such roles. For instance, the five selected DevOps de-
velopers maintain 70 projects in total. However, only one is mainly implemented using
Shell Script, which is the second most relevant feature for this role (see Figure 5.5).
One developer mentioned the devops keyword in his bio, but this was not reinforced by
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the other relevant features; only one of his 18 projects is implemented using a relevant
language (Python). Similar behavior is noted when analyzing Mobile developers. The
majority of the projects analyzed are not written in Mobile-based languages, such as
Swift and Java. Interestingly, most of them are implemented with Frontend-based
ones, such as JavaScript and TypeScript. We analyzed this characteristic further and
found out that some of these projects rely on cross-platform Mobile frameworks—e.g.,
cordova, ionic, etc—which are not in the top-10 most relevant features. In fact, two out
of the five developers explicitly stated they are Frontend developers with experience
in building mobile web apps. Lastly, relevant keywords like android, ios, and mobile,
are indeed mentioned in the repositories of one developer but in a format that prevents
their extraction by our bag-of-words tokenization process, e.g., iOSUIAutomation, My-
FirstAndroid, etc.

5.6 Threats to Validity

The following issues are possible threats to our results:

Target Roles: We analyzed six technical roles in this research. Although they repre-
sent a restricted number of roles, we selected the ones among the most popular,
based on a recent large-scale survey conducted by Stack Overflow. Moreover,
they cover 64% of the jobs recently listed at Stack Overflow jobs, as mentioned
in the Introduction.

Ground Truth: Our dataset is restricted to developers who have profiles on both
Stack Overflow and GitHub. Besides, the ground truth is based on developers’
public activities on GitHub. Evidently, they represent a subset of all activities
of several developers. This limitation may increase false negatives in particular
scenarios. For example, a developer is mobile but the publicly available data
characterizes him/her as backend developer. A potential direction for tackling
this problem could be the usage of developers’ activities from additional data
sources. Furthermore, we followed an automated process to label the 2,284 de-
velopers in the ground truth. This process is subjected to bias since it relies
on the description provided by the developer on Stack Overflow. Further work
should consider a semi-automatic labeling strategy [Vajda et al., 2015] or semi-
supervised learning techniques [Chapelle et al., 2006] to evaluate the accuracy of
our labeling process.



5.7. Final Remarks 89

Multi-label Classification: Other classification techniques can be applied in multi-
label problems, e.g., Label Powerset [Herrera et al., 2016]. However, we rely on
the two most used techniques to handle multi-label classification. Moreover, we
used two well-known classification algorithms—Random Forest and Naive Bayes.
Despite that, further work should consider other classification algorithms, such
as XGBoost [Chen and Guestrin, 2016].

Thresholds: As usual in machine learning studies, we acknowledge that our results de-
pend on different thresholds, which are used for example to discard correlated fea-
tures (Spearman ≥ 0.7), to limit the number of features used in projects’ descrip-
tions ([0.04, 0.15]), projects’ names ([0.01, 0.25]), projects’ topics ([0.01, 0.25]),
and short bio ([0.01, 0.20]), as reported in Section 5.2.4. As a general guideline,
we always use conservative thresholds. Furthermore, we experimented with other
threshold values in all cases and selected the ones that presented the best results.

5.7 Final Remarks

The increasing complexity and relevance of modern software systems are fostering the
specialization of software developers in particular components and technologies. As
a result, when hiring developers, companies usually do not look for developers with
a broad range of skills, but for ones who can work with specific technologies and in
specific tasks. Motivated by this context, in this chapter we described a method cen-
tered on supervised machine learning to predict six widely popular technical roles of
developers nowadays: Backend, Frontend, Mobile, FullStack, DataScience,
and DevOps. Using features extracted from the public profiles of GitHub users, we
obtained great results for identifying all six roles in terms of precision (0.88) and AUC
(0.89). By contrast, we observed lower results for DevOps and Mobile regarding re-
call, e.g., 0.06 and 0.34, respectively. Even so, we believe that this study can offer good
assistance to technical recruiters as, in their context, identifying correct candidates
(precision) is more relevant.

Replication Package: Our data and our scripts—in a Jupyter Notebook format—
are publicly available at the following URL: https://doi.org/10.5281/zenodo.

3986172.

https://doi.org/10.5281/zenodo.3986172
https://doi.org/10.5281/zenodo.3986172




Chapter 6

Conclusion

In this chapter, we briefly describe the research we conducted throughout this thesis
in Section 6.1. Next, we list the main outcomes of this work in Section 6.2. Finally,
we wrap-up this manuscript by outlining further work in Section 6.3.

6.1 Thesis Recapitulation

In recent years, developers have been playing an increasingly preponderant role in the
software development process. Indeed, IT-based companies are giving importance to
hiring new professionals at unprecedented levels. When it comes to the state-of-art
in this field, most of them investigate developers’ expertise in particular domains, i.e.,
towards specific open-source projects. By contrast, the industry is more interested
in obtaining software developers’ information from a more general perspective. We
report in this thesis a set of three major studies where we extensively analyzed data-
driven methods and techniques to leverage software developers’ profiles, considering
their activity in Social Coding Platforms.

We started by defining what expertise is and the difficulties in interpreting it in
the context of software developers (Chapter 2). We also discussed the most common
techniques proposed in the literature to mine activity information from software repos-
itories and to apply machine learning methods in the software engineering domain.
Finally, we described the state-of-the-art concerning the application of mining soft-
ware repositories techniques in Social Coding Platforms to unveil the skill of software
developers.

Next, we reported in Chapter 3 a large-scale investigation with more than 20,000
job advertisements to understand which soft and technical skills do IT companies look
for when hiring new employees. To analyze technical skills, we applied open card sorting
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to perform a high-level analysis on which type of skill is more requested by 14 distinct
professional roles. As for soft skills, we conducted a statistical analysis to reveal the
most mentioned ones. Overall, we observed that development-based roles frequently
require software developers to master both programming languages and third-party
libraries relevant to their activity field. Further, we reinforced the importance that
communication and teamwork-based soft skills have to IT companies.

In Chapter 4, we analyzed the performance of machine learning and data mining
techniques to identify developers’ expertise level in three widely popular JavaScript
libraries: ReactJS, socket.io, and mongodb. For this, we first surveyed 575 software
developers with GitHub profiles and asked them to provide their expertise in one of
the mentioned libraries. Next, we derived 13 low-level features from their GitHub
activity—e.g., the number of commits, time between first and last commit, etc—and
evaluated the performance of both supervised and unsupervised methods. We docu-
mented the challenges we faced during this study and evaluated the effectiveness of a
clustering strategy by triangulating its results with the information available in devel-
opers’ LinkedIn profiles.

Finally, we investigated the use of machine learning methods to automatically
identify the technical roles of open source developers in Chapter 5. We built a ground
truth with 2,284 developers labeled in six different roles: backend, frontend, full-stack,
mobile, devops, and data science. By relying on high-level features—such as projects’
names, programming languages used, etc—we proposed three machine learning strate-
gies to identify these roles. In general, we obtained very good results when identifying
all six roles. Furthermore, we showed the relevance that programming languages have
in predicting the investigated roles.

6.2 Contributions

In the context of the research conducted in this thesis, we highlight the following
contributions:

• We mapped which technical skills are more required from the industry perspective
according to 14 different IT professional roles (Chapter 3). Further, we listed the
most referred soft skills among the opportunities we analyzed. We argue that the
information revealed in this investigation can direct researchers towards relevant
research topics related to software developers’ expertise.

• We build a ground-truth containing the expertise information of 575 developers
with respect to three widely popular JavaScript libraries: ReactJS, socket.io, and
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mongodb (Chapter 4). We claim that this dataset can be used as a baseline
to evaluate the performance of data-driven solutions targeted at identifying the
expertise of software developers. Indeed, we observed a few works relying on this
dataset to conduct their research [Eke, 2020; Vadlamani and Baysal, 2020; Dey
et al., 2021].

• We proposed an unsupervised method that, based on low-level source code fea-
tures provided by GitHub, was able to generate clusters containing experts in
third-party libraries and frameworks. We confirmed the effectiveness of this
method by qualitatively comparing the obtained results with real LinkedIn pro-
files; for example, 72% of the investigated ReactJS experts do cite this library
explicitly in their profiles. We claim that both the proposed method and col-
lected features can guide researchers and practitioners towards further fine-tuned
solutions.

• We showed that given a list of coarse-grained features (e.g., projects’ metadata,
programming languages used, biography text, etc), supervised machine-learning
methods can effectively infer the technical roles of software developers. This
claim is substantially supported by the results we obtained for precision (0.88)
and AUC (0.89) metrics. Essentially, this contribution shows that we can rely on
GitHub’s activity information to infer major characteristics (i.e., technical roles)
of software developers as well.

• We reveal and analyzed the issues we found when adopting data-driven strate-
gies to determine the technical skills of software developers. Specifically, we
qualitatively analyzed the wrong predictions in our studies and proposed a list
of measures to be tackled further, such as the adoption of multiple data sources.
Furthermore, we also discussed different interpretations for both precision and
recall metrics in the context of our problem.

6.3 Future Work

During the research on this subject, we identified some unexplored questions that can
result in relevant works if developed properly. We enumerated these issues in the
following topics:

Expand Soft Skills Analysis: On one hand, this thesis centered its research on in-
vestigating the technical skills of software developers. On the other, soft skills
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also represent an essential element to the success of a project [Bakar and Choo-
Yee Ting, 2011]. As described in Chapter 3, IT companies frequently look for
professional with developed communication and teamwork skills. However, we
lack pieces of evidence concerning the importance software developers give to
these soft skills. Hence, one can conduct a similar study to understand the de-
velopers’ perspective regarding soft skills and then compare the results we report
in this manuscript. Alternatively, we can also expand our currently soft skills
inspection by adopting an automated method to mine soft skills from job adver-
tisements [Sayfullina et al., 2018], and perform a stratified analysis to verify the
most demanded soft skills for each IT role (as we did with hard skills).

Technical Expertise in Programming Languages: Our study in Chapter 3 also
showed the relevance that programming languages have to select new candidates.
Although we relied on programming language’s data to assist in identifying de-
velopers’ technical skills (see Chapter 5), we did not conduct a specific study
to extract the expertise they have in this topic. Therefore, we understand it
is important to propose data-driven methods aimed at identifying developers’
expertise in programming languages.

Third-party Libraries Assessment in Other Ecosystems: In Chapter 4, we
proposed to identify the expertise level in three widely popular JavaScript li-
braries. Despite the increasing popularity of the JavaScript universe in recent
years [Borges et al., 2016], we acknowledge that the scope of this study is rather
strict when compared with the software development ecosystem as a whole. Due
to this fact, we argue that extending this evaluation to other languages is very
important to ensure the applicability of our method. Indeed, we already started
a new investigation in this direction by analyzing the effectiveness of the pro-
posed unsupervised technique to identify experts in eight well-known third-party
libraries implemented in four programming languages: Java, Python, PHP, and
C#.

Include Multiple Data Sources in Expertise Prediction: In this thesis, we re-
lied on the information available at GitHub to identify the expertise elements
investigated in Chapters 4 and 5. We opted for doing so because we would like
to depend mostly on the developers’ programming activity. On the other side,
we realized that adopting just one data source limit the variety of information
that can be used to perform such predictions [Sarma et al., 2016; Eke, 2020;
Vadlamani and Baysal, 2020]. For example, we showed in Section 4.5.4 that the
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lack of pertinent information represents a relevant limitation to the performance
of data-driven methods. So, we claim that future work may include new data
sources to improve the prediction results.

Develop Plug-in Tools to Identify Expertise in the Wild: Although we devel-
oped two concrete solutions to detect software developers’ expertise, both im-
plementations remain at the early-research stage. In this line, a further effort
can be employed in order to implement publicly available plug-in tools for both
methods [Brito and Valente, 2020; Coelho et al., 2020].
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Appendix A

Library Expertise Survey

Hi [developer],

I am a PhD student at UFMG, Brazil, working with techniques to assess the skills of
developers by mining their activities on git repositories.

To calibrate my current approach, I need data about the skills of developers in a set
of frameworks.

For example, I found that you have been contributing to GitHub projects that use
[target library] JavaScript library.

So, could please rank your expertise on [target library] JavaScript library in a
scale from 1 (novice) to 5 (expert)?

(important: I will use your answer exclusively in my research and only in aggregated
and anonymised format).

Best,

João Eduardo Montandon
DCC, UFMG, Brazil
Applied Software Engineering Research Group
http://aserg.labsoft.dcc.ufmg.br
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